Analytical expressions are found for the coupled wavenumbers in flexible, fluid-filled, circular cylindrical orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders. The Donnell–Mushtari shell theory is used to model the shell and the effect of the fluid is introduced through the fluid-loading parameter μ. The orthotropic problem is posed as a perturbation on the corresponding isotropic problem by defining a suitable orthotropy parameter ε, which is a measure of the degree of orthotropy. For the first study, an isotropic shell is considered (by setting ε = 0) and expansions are found for the coupled wavenumbers using a regular perturbation approach. In the second study, asymptotic expansions are found for the coupled wavenumbers in the limit of small orthotropy (ε1). For each study, isotropy and orthotropy, expansions are found for small and large values of the fluid-loading parameter μ. All the asymptotic solutions are compared with numerical solutions to the coupled dispersion relation and the match is seen to be good. The differences between the isotropic and orthotropic solutions are discussed. The main contribution of this work lies in extending the existing literature beyond in vacuo studies to the case of fluid-filled shells (isotropic and orthotropic).

1.
A. M. J.
Al-Najafi
and
G. B.
Warburton
, “
Free vibration of ring-stiffened cylindrical shells
,”
J. Sound Vib.
13
(
1
),
9
25
(
1970
).
2.
A.
Leissa
, “
Vibration of shells
,” Technical Report NASA SP-288,
National Aeronautics and Space Administration
, pp.
185
218
(
1973
).
3.
D. J.
Mead
and
N. S.
Bardell
, “
Free vibration of a thin cylindrical shell with discrete axial stiffeners
,”
J. Sound Vib.
111
(
2
),
229
250
(
1986
).
4.
R. B.
Nelson
,
S. B.
Dong
, and
R. D.
Kalra
, “
Vibrations and waves in laminated orthotropic circular cylinders
,”
J. Sound Vib.
18
(
3
),
429
444
(
1971
).
5.
B. K.
Rath
and
Y. C.
Das
, “
Vibrations of layered shells
,”
J. Sound Vib.
28
(
4
),
737
757
(
1973
).
6.
Z.
Mecitoglu
and
M. C.
Dökmeci
, “
Forced vibrations of stiffened cylindrical elastic panels
,”
J. Acoust. Soc. Am.
85
,
S118
S118
(
1989
).
7.
Y.
Luan
, “
The structural acoustic properties of stiffened shells
,”
J. Acoust. Soc. Am.
123
(
5
),
3063
3063
(
2008
).
8.
Y.
Luan
,
M.
Ohlrich
, and
F.
Jacobsen
, “
Smearing technique for vibration analysis of simply supported cross-stiffened and doubly curved thin rectangular shells
,”
J. Acoust. Soc. Am.
129
(
2
),
707
716
(
2011
).
9.
S. K.
Bhattacharyya
and
C. P.
Vendhan
, “
Wave propagation in semi-infinite plane anisotropic thin circular shells
,”
J. Sound Vib.
149
(
1
),
71
82
(
1991
).
10.
K.
Chandrashekhara
and
D. V. T. G.
Pavan Kumar
, “
Assessment of shell theories for the static analysis of cross-ply laminated circular cylindrical shells
,”
Thin-Walled Struct.
22
(
1
),
291
318
(
1995
).
11.
M.
Naghieh
and
S. I.
Hayek
, “
Vibration of fiber-reinforced spherical shells
,”
Fibre Sci. Technol.
4
,
115
137
(
1971
).
12.
M.
Naghieh
and
S. I.
Hayek
, “
Vibration of fluid-filled fiber-reinforced spherical shells
,”
J. Sound Vib.
19
(
2
),
153
166
(
1971
).
13.
M.
Naghieh
and
S. I.
Hayek
, “
Transmission of acoustic waves through submerged orthotropic spherical shells
,”
J. Acoust. Soc. Am.
50
(
5
),
1334
1342
(
1971
).
14.
Z. C.
Xi
,
L. H.
Yam
, and
T. P.
Leung
, “
Free vibration of a partially fluid-filled crossply laminated composite circular cylindrical shell
,”
J. Acoust. Soc. Am.
101
(
2
),
909
917
(
1997
).
15.
Z. C.
Xi
,
G. R.
Liu
,
K. Y.
Lam
, and
H. M.
Shang
, “
Dispersion and characteristic surfaces of waves in laminated composite circular cylindrical shells
,”
J. Acoust. Soc. Am.
108
(
5
),
2179
2186
(
2000
).
16.
Y. C.
Das
, “
Wave propagation in semi-infinite plane anisotropic thin circular shells
,”
Appl. Sci. Res., Sect. A
12
,
317
362
(
1962
).
17.
S.
Markus
and
D. J.
Mead
, “
Axisymmetric and asymmetric wave motion in orthotropic cylinders
,”
J. Sound Vib.
181
(
1
),
127
147
(
1995
).
18.
K. P.
Soldatos
and
J.
Ye
, “
Wave propagation in anisotropic laminated hollow cylinders of infinite extent
,”
J. Acoust. Soc. Am.
96
(
6
),
3744
3752
(
1994
).
19.
C. R.
Fuller
and
F. J.
Fahy
, “
Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid
,”
J. Sound Vib.
81
,
501
518
(
1982
).
20.
C. R.
Fuller
, “
The input mobility of an infinite circular cylindrical elastic shell filled with fluid
,”
J. Sound Vib.
87
,
409
427
(
1983
).
21.
C. R.
Fuller
, “
Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions
,”
J. Sound Vib.
122
,
479
490
(
1988
).
22.
D. G.
Crighton
, “
The 1988 Rayleigh medal lecture: Fluid-loading—the interaction between sound and vibration
,”
J. Sound Vib.
133
,
1
27
(
1989
).
23.
M. V.
Kunte
,
A.
Sarkar
, and
V. R.
Sonti
, “
Generalized asymptotic expansions for coupled wavenumbers in fluid-filled cylindrical shells
,”
J. Sound Vib.
329
,
5356
5374
(
2010
).
24.
A.
Sarkar
and
V. R.
Sonti
, “
Asymptotic analysis for the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell: The axisymmetric mode
,”
Comput. Model. Eng. Sci.
21
(
3
),
193
207
(
2007
).
25.
A.
Sarkar
and
V. R.
Sonti
, “
Asymptotic analysis for the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell: The beam mode
,”
J. Sound Vib.
319
,
646
667
(
2009
).
26.
M. V.
Kunte
,
A.
Sarkar
, and
V. R.
Sonti
, “
Generalized asymptotic expansions for the wavenumbers in infinite flexible in vacuo orthotropic cylindrical shells
,”
J. Sound Vib.
330
,
5628
5643
(
2011
).
27.
J.-H.
Songa
,
K.-J.
Honga
,
T. K.
Hab
, and
H. T.
Jeong
, “
The effect of hot rolling condition on the anisotropy of mechanical properties in ti-6al-4v alloy
,”
Mater. Sci. Eng.
,
449–451
,
144
148
(
2007
).
28.
M.
Langseth
,
O. S.
Hopperstad
, and
T.
Berstad
, “
Crashworthiness of aluminium extrusions: validation of numerical simulation, effect of mass ratio and impact velocity
,”
Int. J. Impact Eng.
22
,
829
854
(
1999
).
29.
C. V.
Ramakrishnan
and
A. H.
Shah
, “
Vibration of an aelotropic spherical shell
,”
J. Acoust. Soc. Am.
47
(
5
),
1366
1374
(
1970
).
30.
B.
Johansson
and
A.
Olsson
, “
Current design practice and research on stainless steel structures in Sweden
,”
J. Constr. Steel Res.
54
,
3
29
(
2000
).
31.
J. A.
Holmberg
, “
Application of Weibull theory to random-fibre composites
,”
Compos. Sci. Technol.
54
,
75
85
(
1995
).
32.
J. M.
Corum
,
R. L.
Battiste
,
C. R.
Brinkman
,
W.
Ren
,
M. B.
Ruggles
, and
G. T.
Yahr
, “Durability-based design criteria for an automotive structural composite: Part 2. Background data and models, Technical Report ORNL6931, Oak Ridge National Laboratory Technical Report, pp.
3
1
3
3
(
1998
).
33.
N. A.
Apetre
, “
Sandwich panels with functionally graded core
,” Ph.D. thesis,
University of Florida
,
2005
, pp.
1
3
.
34.
W.
Soedel
,
Vibration of Plates and Shells
(
Marcel-Dekker, Inc.
,
New York
,
2004
), pp.
395
396
.
35.
A.
Sarkar
and
V. R.
Sonti
, “
An asymptotic analysis for the coupled dispersion characteristics of a structural acoustic waveguide
,”
J. Sound Vib.
306
,
657
674
(
2007
).
You do not currently have access to this content.