As a prerequisite to quantitative psychophysical models of sensory processing it is necessary to learn to what extent decisions in behavioral tasks depend on specific stimulus features, the perceptual cues. Based on relative linear combination weights, this study demonstrates how stimulus-response data can be analyzed in this regard relying on an L1-regularized multiple logistic regression, a modern statistical procedure developed in machine learning. This method prevents complex models from over-fitting to noisy data. In addition, it enforces “sparse” solutions, a computational approximation to the postulate that a good model should contain the minimal set of predictors necessary to explain the data. In simulations, behavioral data from a classical auditory tone-in-noise detection task were generated. The proposed method is shown to precisely identify observer cues from a large set of covarying, interdependent stimulus features—a setting where standard correlational and regression methods fail. The proposed method succeeds for a wide range of signal-to-noise ratios and for deterministic as well as probabilistic observers. Furthermore, the detailed decision rules of the simulated observers were reconstructed from the estimated linear model weights allowing predictions of responses on the basis of individual stimuli.

1.
Ahumada
,
A.
(
1996
). “
Perceptual classification images from Vernier acuity masked by noise
,”
Perception
25
.
2.
Ahumada
,
A.
(
2002
). “
Classification image weights and internal noise level estimation
,”
J. Vision
2
,
121
131
.
3.
Ahumada
,
A.
, and
Lovell
,
J.
(
1971
). “
Stimulus features in signal detection
,”
J. Acoust. Soc. Am.
49
,
1751
1756
.
4.
Ahumada
,
A. J.
(
1967
). “
Detection of tones masked by noise: A comparison of human observers with digital-computer-simulated energy detectors of varying bandwidths
,” doctoral dissertation, Tech. Rep. No. 29,
University of California
, Los Angeles, CA.
5.
Alexander
,
J. M.
, and
Lutfi
,
R. A.
(
2004
). “
Informational masking in hearing-impaired and normal-hearing listeners: Sensation level and decision weights
,”
J. Acoust. Soc. Am.
116
,
2234
2247
.
6.
Berg
,
B. G.
(
1989
). “
Analysis of weights in multiple observation tasks
,”
J. Acoust. Soc. Am.
86
,
1743
1746
.
7.
Bishop
,
C. M.
(
2006
).
Pattern Recognition and Machine Learning
(
Springer
,
New York)
,
738
pp.
8.
Claerbout
,
J. F.
, and
Muir
,
F.
(
1973
). “
Robust modeling with erratic data
,”
Geophysics
38
,
826
844
.
9.
Dau
,
T.
,
Püschel
,
D.
, and
Kohlrausch
,
A.
(
1996
). “
A quantitative model of the ‘effective’ signal processing in the auditory system. I. Model structure
,”
J. Acoust. Soc. Am.
99
,
3615
3622
.
10.
Davidson
,
S. A.
,
Gilkey
,
R. H.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2006
). “
Binaural detection with narrowband and wideband reproducible noise maskers. III. Monaural and diotic detection and model results
,”
J. Acoust. Soc. Am.
119
,
2258
2275
.
11.
Davidson
,
S. A.
,
Gilkey
,
R. H.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2009a
). “
An evaluation of models for diotic and dichotic detection in reproducible noises
,”
J. Acoust. Soc. Am.
126
,
1906
1925
.
12.
Davidson
,
S. A.
,
Gilkey
,
R. H.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2009b
). “
Diotic and dichotic detection with reproducible chimeric stimuli
,”
J. Acoust. Soc. Am.
126
,
1889
1905
.
13.
Donoho
,
D. L.
(
2004
). “
For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
,”
Commun. Pure Appl. Math.
59
,
797
829
.
14.
Donoho
,
D. L.
,
Elad
,
M.
, and
Temlyakov
,
V.
(
2006
). “
Stable recovery of sparse overcomplete representations in the presence of noise
,”
IEEE Trans. Inf. Theory
52
,
6
18
.
15.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
(
2001
).
Pattern Classification
, 2nd edition (
John Wiley
,
New York
), Chap. 6.11.
16.
Dye
,
R. H.
,
Stellmack
,
M. A.
, and
Jurcin
,
N. F.
(
2005
). “
Observer weighting strategies in interaural time-difference discrimination and monaural level discrimination for a multi-tone complex
,”
J. Acoust. Soc. Am.
117
,
3079
3090
.
17.
Evilsizer
,
M. E.
,
Gilkey
,
R. H.
,
Mason
,
C. R.
,
Colburn
,
H. S.
, and
Carney
,
L. H.
(
2002
). “
Binaural detection with narrowband and wideband reproducible noise maskers: I. Results for human
,”
J. Acoust. Soc. Am.
111
,
336
345
.
18.
Fan
,
R.-E.
,
Chang
,
K.-W.
,
Hsieh
,
C.-J.
,
Wang
,
X.-R.
, and
Lin.
,
C.-J.
(
2008
). “
Liblinear: A library for large linear classification
,”
J. Mach. Learn. Res.
9
,
1871
1874
, http://www.csie.ntu.edu.tw/̃cjlin/liblinear (Last viewed August 8, 2011).
19.
Fletcher
,
H.
(
1938
). “
Loudness, masking and their relation to the hearing process and the problem of noise measurement
,”
J. Acoust. Soc. Am.
9
,
275
293
.
20.
Fletcher
,
H.
(
1940
). “
Auditory patterns
,”
Rev. Mod. Phys.
12
,
47
65
.
21.
Forster
,
M.
(
2000
). “
Key concepts in model selection: Performance and generalizability
,”
J. Math. Psychol.
44
,
205
231
.
22.
Gilkey
,
R. H.
, and
Robinson
,
D. E.
(
1986
). “
Models of auditory masking: A molecular psychophysical approach
,”
J. Acoust. Soc. Am.
79
,
1499
1510
.
23.
Green
,
D. M.
(
1964
). “
Consistency of auditory detection judgments
,”
Psychol. Rev.
71
,
392
407
.
24.
Green
,
D. M.
,
Berg
,
B. G.
,
Dai
,
H.
,
Eddins
,
D. A.
,
Onsan
,
Z.
, and
Nguyen
,
Q.
(
1992
). “
Spectral shape discrimination of narrow-band sounds
,”
J. Acoust. Soc. Am.
92
,
2586
2597
.
25.
Green
,
D. M.
, and
Swets
,
J. A.
(
1966
).
Signal Detection Theory and Psychophysics
(
John Wiley
,
New York
),
455
pp.
26.
Hall
,
J. W.
, and
Grose
,
J. H.
(
1988
). “
Comodulation masking release: Evidence for multiple cues
,”
J. Acoust. Soc. Am.
84
,
1669
1675
.
27.
Hartmann
,
W. M.
(
1998
).
Signals, Sound, and Sensation (Modern Acoustics and Signal Processing)
(
Springer
,
New York
), Chap. 23.
28.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
(
2009
).
The Elements of Statistical Learning
, 2nd edition (
Springer
,
New York
),
745
pp.
29.
Kidd
,
G.
,
Mason
,
C. R.
,
Brantley
,
M. A.
, and
Owen
,
G. A.
(
1989
). “
Roving-level tone-in-noise detection
,”
J. Acoust. Soc. Am.
86
,
1310
1317
.
30.
Kienzle
,
W.
,
Franz
,
M. O.
,
Schölkopf
,
B.
, and
Wichmann
,
F. A.
(
2009
). “
Center-surround patterns emerge as optimal predictors for human saccade targets
,”
J. Vision
9
,
7
1
.
31.
Koh
,
K.
,
Kim
,
S.
, and
Boyd
,
S.
(
2007
). “
An interior-point method for large-scale l1-regularized logistic regression
,”
J. Mach. Learn. Res.
8
,
1519
1555
.
32.
Lutfi
,
R. A.
(
1995
). “
Correlation coefficients and correlation ratios as estimates of observer weights in multiple-observation tasks
,”
J. Acoust. Soc. Am.
97
,
1333
1334
.
33.
Macke
,
J. H.
, and
Wichmann
,
F. A.
(
2010
). “
Estimating predictive stimulus features from psychophysical data: The decision image technique applied to human faces
,”
J. Vision
10
,
22
1
.
34.
Matthew
,
R.
,
Banjevic
,
M.
,
Chan
,
A. S.
,
Myers
,
L.
,
Wolkowicz
,
R.
,
Haberer
,
J.
, and
Singer
,
J.
(
2005
). “
Use of the l1-norm for selection of sparse parameter sets that accurately predict drug response phenotype from viral genetic sequences
,” in
AMIA Annual Symposium Proceedings
, pp.
505
509
.
35.
Neri
,
P.
, and
Levi
,
D. M.
(
2006
). “
Receptive versus perceptive fields from the reverse-correlation viewpoint
,”
Vision Res.
46
,
2465
2474
.
36.
Noble
,
W. S.
(
2006
). “
What is a support vector machine?
,”
Nat. Biotechnol.
24
,
1565
1567
.
37.
Patterson
,
R.
,
Nimmo-Smith
,
I.
,
Holdsworth
,
J.
, and
Rice
,
P.
(
1988
). “
Spiral VOS final report, Part A: The auditory filter bank
,” Report No. 2341, MRC Applied Psychology Unit, University of Cambridge Medical School, Cambridge, UK.
38.
Pedersen
,
B.
, and
Ellermeier
,
W.
(
2008
). “
Temporal weights in the level discrimination of time-varying sounds
,”
J. Acoust. Soc. Am.
123
,
963
972
.
39.
Richards
,
V. M.
,
Heller
,
L. M.
, and
Green
,
D. M.
(
1991
). “
The detection of a tone added to a narrow band of noise: The energy model revisited
,”
Quart. J. Exp. Psychol. A
43
,
481
501
.
40.
Richards
,
V. M.
, and
Nekrich
,
R. D.
(
1993
). “
The incorporation of level and level-invariant cues for the detection of a tone added to noise
,”
J. Acoust. Soc. Am.
94
,
2560
2574
.
41.
Richards
,
V. M.
, and
Tang
,
Z.
(
2006
). “
Estimates of effective frequency selectivity based on the detection of a tone added to complex maskers
,”
J. Acoust. Soc. Am.
119
,
1574
1584
.
42.
Richards
,
V. M.
, and
Zhu
,
S.
(
1994
). “
Relative estimates of combination weights, decision criteria, and internal noise based on correlation coefficients
,”
J. Acoust. Soc. Am.
95
,
423
434
.
43.
Ryali
,
S.
,
Supekar
,
K.
,
Abrams
,
D. A.
, and
Menon
,
V.
(
2010
). “
Sparse logistic regression for whole-brain classification of fMRI data
,”
NeuroImage
51
,
752
764
.
44.
Schölkopf
,
B.
, and
Smola
,
A. J.
(
2001
).
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
(
MIT Press
,
Cambridge, MA
),
626
pp.
45.
Tibshirani
,
R.
(
1996
). “
Regression shrinkage and selection via the lasso
,”
J. R. Stat. Soc. Ser. B
58
,
267
288
.
46.
Tikhonov
,
A. N.
(
1963
). “
On solving ill-posed problems and the method of regularization
,”
Dokl. Akad. Nauk USSR
153
,
501
504
.
47.
Tropp
,
J. A.
(
2006
). “
Just relax: Convex programming methods for identifying sparse signals in noise
,”
IEEE Trans. Inf. Theory
52
,
1030
1051
.
48.
Vapnik
,
V. N.
(
2000
).
The Nature of Statistical Learning Theory
, 2nd edition (
Springer Verlag
,
New York
).
49.
Wichmann
,
F. A.
,
Graf
,
A.
,
Simoncelli
,
E. P.
, and
Bülthoff
,
H.
(
2005
). “
Machine learning applied to perception: Decision-images for gender classification
,”
Adv. Neural Inf. Process. Syst.
17
,
1489
1496
.
50.
Wichmann
,
F. A.
, and
Hill
,
N. J.
(
2001
). “
The psychometric function: I. Fitting, sampling, and goodness of fit
,”
Percept. Psychophys.
63
,
1293
1313
.
51.
Yovel
,
Y.
,
Franz
,
M. O.
,
Stilz
,
P.
, and
Schnitzler
,
H.-U.
(
2008
). “
Plant classification from bat-like echolocation signals
,”
PLoS Comput. Biol.
4
,
e1000032
.
52.
Yovel
,
Y.
,
Melcon
,
M.
,
Franz
,
M. O.
,
Denzinger
,
A.
, and
Schnitzler
,
H.-U.
(
2009
). “
The voice of bats: How greater mouse-eared bats recognize individuals based on their echolocation calls
PLoS Comput. Biol.
5
,
e1000400
.
You do not currently have access to this content.