Herein investigated are computationally simple microphone-array beamformers that are independent of the frequency-spectra of all signals, all interference, and all noises. These beamformers allow the listener to tune the desired azimuth-elevation “look direction.” No prior information is needed of the interference. These beamformers deploy a physically compact triad of three collocated but orthogonally oriented velocity sensors. These proposed schemes’ efficacy is verified by a jury test, using simulated data constructed with Mandarin Chinese (a.k.a. Putonghua) speech samples. For example, a desired speech signal, originally at a very adverse signal-to-interference-and-noise power ratio (SINR) of −30 dB, may be processed to become fully intelligible to the jury.

1.
Such beamforming may be construed as a spatial counterpart of a passband-stopband frequency filter. Instead of the latter’s discrete-time samples, a beamformer collects spatial samples visa multiple sensors distributed over a spatial region.
2.
When any emitter lies in the acoustic vector-sensor’s near field, the pressure-sensor’s response will be frequency-dependent (Ref. 5). Hence, the present beamformer will omit the pressure sensor to maintain the beamformer’s frequency independence for all near-field/far-field sources.
3.
A.
Nehorai
and
E.
Paldi
, “
Acoustic vector-sensor array processing
,”
IEEE Trans. Signal Process.
42
,
2481
2491
(
1994
).
4.
J. A.
McConnell
, “
Analysis of a compliantly suspended acoustic velocity sensor
,”
J. Acoust. Soc. Am.
113
,
1395
1405
(
2003
).
5.
Y. I.
Wu
,
K. T.
Wong
, and
S. K.
Lau
, “
The acoustic vector-sensor’s near-field array-manifold
,”
IEEE Trans. Signal Process.
58
,
3946
3951
(
2010
).
6.
B.
Hochwald
and
A.
Nehorai
, “
Identifiability in array processing models with vector-sensor applications
,”
IEEE Trans. Signal Process.
44
,
83
95
(
1996
).
7.
M.
Hawkes
and
A.
Nehorai
, “
Effects of sensor placement on acoustic vector-sensor array performance
,”
IEEE J. Ocean. Eng.
24
,
33
40
(
1999
).
8.
B. A.
Cray
and
A. H.
Nuttall
, “
Directivity factors for linear arrays of velocity sensors
,”
J. Acoust. Soc. Am.
110
,
324
331
(
2001
).
9.
K. T.
Wong
and
H.
Chi
, “
Beam patterns of an underwater acoustic vector hydrophone located away from any reflecting boundary
,”
IEEE J. Ocean. Eng.
27
,
628
637
(
2002
).
10.
M. T.
Silvia
and
R. T.
Richards
, “
A theoretical and experimental investigation of low-frequency acoustic vector sensors
,” in
IEEE Oceans Conference
(
2002
), pp.
1886
1897
.
11.
B. A.
Cray
, “
Directional point receivers: The sound and the theory
,” in
IEEE Oceans Conference
(
2002
), pp.
1903
1905
.
12.
B. R.
Rapids
and
G. C.
Lauchle
, “
Processing of forward scattered acoustic fields with intensity sensors
,” in
IEEE Oceans Conference
(
2002
), pp.
1911
1914
.
13.
B. A.
Cray
,
V. M.
Evora
, and
A. H.
Nuttall
, “
Highly directional acoustic receivers
,”
J. Acoust. Soc. Am.
113
,
1527
1533
(
2003
).
14.
S.
Guiqing
,
L.
Qihu
, and
Z.
Bin
, “
Acoustic vector sensor signal processing
,”
Chin. J. Acoust.
25
,
1
14
(
2006
).
15.
H.
Cox
, “
Super-directivity revisited
,” in
IEEE Instrumentation and Measurement Technology Conference
(
2004
), pp.
87
90
.
16.
H.
Keshavarz
, “
Beam patterns of an underwater acoustic vector hydrophone located near a reflecting boundary
,” in
IEEE Oceans Conference
(
2004
), Vol.
2
, pp.
585
588
.
17.
G. L.
D’Spain
,
J. C.
Luby
,
G. R.
Wilson
, and
R. A.
Gramann
, “
Vector sensors and vector sensor line arrays: Comments on optimal array gain and detection
,”
J. Acoust. Soc. Am.
120
,
171
185
(
2006
).
18.
N.
Qi
and
T.
Tian
, “
Acoustic vector hydrophone array supergain energy flux beamforming
,” in
International Conference on Signal Processing
(
2006
), Vol.
4
.
19.
D. J.
Schmidlin
, “
Directionality of generalized acoustic sensors of arbitrary order
,”
J. Acoust. Soc. Am.
121
,
3569
3578
(
2007
).
20.
H.
Cox
and
H.
Lai
, “
Performance of line arrays of vector and higher order sensors
,” in
Asilomar Conference on Signals, Systems and Computers
(
2007
), pp.
1231
1236
.
21.
J. A.
Clark
, “
High-order angular response beamformer for vector sensors
,”
J. Sound Vib.
318
(
3
),
417
422
(
2008
).
22.
P. K.
Tam
and
K. T.
Wong
, “
Cramer-rao bounds for direction finding by an acoustic vector sensor under nonideal gain-phase responses, noncollocation, or nonorthogonal orientation
,”
IEEE Sens. J.
9
,
969
982
(
2009
).
23.
K. T.
Wong
, “
Acoustic vector-sensor ffh blind beamforming & geolocation
,”
IEEE Trans. Aerosp. Electron. Syst.
46
,
444
449
(
2010
).
24.
Y. I.
Wu
and
K. T.
Wong
, “
Acoustic near-field source localization by two passive anchor nodes
,”
IEEE Trans. Aerosp. Electron. Syst.
48
,
159
169
(
2012
).
25.
H.
Cox
and
R. M.
Zeskind
, “
Adaptive cardiod processing
,” in
Asilomar Conference on Signals, Systems and Computers
(
1992
), pp.
1058
1061
.
26.
M.
Hawkes
and
A.
Nehorai
, “
Acoustic vector-sensor beamforming and capon direction estimation
,”
IEEE Trans. Signal Process.
46
,
2291
2304
(
1998
).
27.
H.
Junying
,
L.
Chunxu
,
L.
Guolong
, and
L.
Hong
, “
A combined signal processing approach against coherent interference with pressure and particle velocity
,”
Chin. J. Acoust.
20
,
2001
2010
(
2001
).
28.
J.
Hui
,
H.
Liu
,
M.
Fan
, and
G.
Liang
, “
Study on the physical basis of pressure and particle velocity combine processing
,”
Chin. J. Acoust.
20
,
203
212
(
2001
).
29.
H. W.
Chen
and
J. W.
Zhao
, “
Wideband mvdr beamforming for acoustic vector sensor linear array
,”
IEE Proc., Radar Sonar Navig.
151
,
158
162
(
2004
).
30.
S.
Guiqing
and
L.
Qihu
, “
Acoustic vector sensor signal processing
,”
Acta Acust.
29
,
491
498
(
2004
).
31.
M. E.
Lockwood
and
D. L.
Jones
, “
Beamformer performance with acoustic vector sensors in air
,”
J. Acoust. Soc. Am.
119
,
608
619
(
2006
).
32.
H.
Cox
and
H.
Lai
, “
Endfire supergain with a uniform line array of pressure and velocity sensors
,” in
Asilomar Conference on Signals, Systems and Computers
(
2006
), pp.
2271
2275
.
33.
H.
Lai
,
H.
Cox
, and
K.
Bell
, “
Adaptive factored beamforming for vector sensor arrays
,” in
Asilomar Conference on Signals, Systems and Computers
(
2008
), pp.
402
406
.
34.
A.
Agarwal
,
A.
Kumar
,
M.
Aggarwal
, and
R.
Bahl
, “
Design and experimentation with acoustic vector sensors
,” in
International Symposium on Ocean Electronics
(
2009
), pp.
139
146
.
35.
Please see equation (6.202) on page 491 of Ref. 38.
36.
D. G.
Manolakis
,
Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing
,
641
656
(
McGraw-Hill
,
Boston, MA
,
2000
).
37.
H. L. V.
Trees
,
Detection, Estimation, and Modulation Theory, Part IV: Optimum Array Processing
(
Wiley
,
New York
,
2002
), pp.
439
512
.
38.
H.
Cox
, “
Resolving power and sensitivity to mismatch of optimum array processors
,”
J. Acoust. Soc. Am.
54
,
771
785
(
1973
).
39.
Please see equations (6.218) to (6.230) in Ref. 38.
40.
R. O.
Schmidt
, “
Multiple emitter location and signal parameter estimation
,”
IEEE Trans. Antennas Propag.
AP-34
,
276
280
(
1986
).
41.
M.
Shujau
,
C. H.
Ritz
, and
I. S.
Burnett
, “
Using in-air acoustic vector sensors for tracking moving speakers
,” in
International Conference on Signal Processing and Communication Systems
(
2010
), pp.
1
5
.
42.
J.
Li
,
P.
Stoica
, and
Z.
Wang
, “
On robust capon beamforming and diagonal loading
,”
IEEE Trans. Signal Process.
51
,
1702
1715
(
2003
).
43.
Y.
Zhang
,
D.
Sun
, and
D.
Zhang
, “
Robust adaptive acoustic vector sensor beamforming using automated diagonal loading
,”
Appl. Acoust.
70
,
1029
1033
(
2009
).
You do not currently have access to this content.