Acoustic radiation force exerted by standing waves on particles is analyzed using a finite difference time domain Lagrangian method. This method allows the acoustic radiation force to be obtained directly from the solution of nonlinear fluid equations, without any assumptions on size or geometry of the particles, boundary conditions, or acoustic field amplitude. The model converges to analytical results in the limit of small particle radii and low field amplitudes, where assumptions within the analytical models apply. Good agreement with analytical and numerical models based on solutions of linear scattering problems is observed for compressible particles, whereas some disagreement is detected when the compressibility of the particles decreases.

1.
L.
King
, “
On the acoustic radiation pressure on spheres
,”
Proc. R. Soc. London, Ser. A
147
,
212
240
(
1934
).
2.
J.
Hultström
,
O.
Manneberg
,
K.
Dopf
,
H.
Hertz
,
H.
Brismar
, and
M.
Wiklund
, “
Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip
,”
Ultrasound Med. Biol.
33
,
145
151
(
2007
).
3.
D.
Bazou
,
W.
Coakley
,
A.
Hayes
, and
S.
Jackson
, “
Long-term viability and proliferation of alginate-encapsulated 3-d hepg2 aggregates formed in an ultrasound trap
,”
Toxicol. In Vitro
22
,
1321
1331
(
2008
).
4.
C.
Ratier
and
M.
Hoyos
, “
Acoustic programming in step-split-flow lateral-transport thin fractionation
,”
Analyt. Chem.
82
,
1318
1325
(
2010
).
5.
P.
Augustsson
,
L. B.
Åberg
,
A.-M.
Swärd-Nilsson
, and
T.
Laurell
, “
Buffer medium exchange in continuous cell and particle streams using ultrasonic standing wave focusing
,”
Microchim. Acta
164
,
269
277
(
2009
).
6.
K.
Yosioka
and
Y.
Kawasima
, “
Acoustic radiation pressure on a compressible sphere
,”
Acustica
5
,
167
173
(
1955
).
7.
L.
Gor’kov
, “
On the forces acting on a small particle in an acoustical field in an ideal fluid
,”
Sov. Phys. Dokl.
6
,
773
775
(
1962
).
8.
T.
Hasegawa
and
K.
Yosioka
, “
Acoustic radiation force on a solid elastic sphere
,”
J. Acoust. Soc. Am.
46
,
1139
1143
(
1969
).
9.
T.
Hasegawa
, “
Acoustic radiation force on a sphere in a quasistationary wave field theory
,”
J. Acoust. Soc. Am.
65
,
32
40
(
1979
).
10.
P. J.
Westervelt
, “
The theory of steady forces caused by sound waves
,”
J. Acoust. Soc. Am.
23
,
312
315
(
1951
).
11.
A. A.
Doinikov
, “
On the radiation pressure on small spheres
,”
J. Acoust. Soc. Am.
100
,
1231
1233
(
1996
).
12.
A. A.
Doinikov
, “
Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula
,”
J. Acoust. Soc. Am.
101
,
713
721
(
1997
).
13.
D.
Haydock
, “
Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field
,”
J. Phys. A
38
,
3265
3277
(
2005
).
14.
G.
Barrios
and
R.
Rechtman
, “
Dynamics of an acoustically levitated particle using the lattice Boltzmann method
,”
J. Fluid Mech.
596
,
191
200
(
2008
).
15.
J. T.
Wang
and
J.
Dual
, “
Numerical simulations for the time-averaged acoustic forces acting on rigid cylinders in ideal and viscous fluids
,”
J. Phys. A
42
,
285502
(
2009
).
16.
A.
Neild
,
S.
Oberti
,
A.
Haake
, and
J.
Dual
, “
Finite element modeling of a microparticle manipulator
,”
Ultrasonics
44
,
e455
e460
(
2006
).
17.
S. T.
Kang
and
C. K.
Yeh
, “
Potential-well model in acoustic tweezers
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
57
,
1451
1459
(
2010
).
18.
F.
Cai
,
L.
Meng
,
C.
Jiang
,
Y.
Pan
, and
H.
Zheng
, “
Computation of the acoustic radiation force using the finite-difference time-domain method
,”
J. Acoust. Soc. Am.
128
,
1617
1622
(
2010
).
19.
Y.
Liu
,
J.
Hu
, and
C.
Zhao
, “
Dependence of acoustic trapping capability on the orientation and shape of particles
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
57
,
1443
1450
(
2010
).
20.
E. J.
Caramana
,
D. E.
Burton
,
M. J.
Shashkov
, and
P. P.
Whalen
, “
The construction of compatible hydrodynamics algorithms utilizing conservation of total energy
,”
J. Comput. Phys.
146
,
227
262
(
1998
).
21.
Y. B.
Zel’dovich
and
Y. P.
Raizer
,
Shock Waves and High-Temperature Hydrodynamic Phenomena
(
Academic
,
New York
,
1966
).
22.
P. P.
Mishra
,
P.
Glynne-Jones
,
J. B.
Rosemary
, and
M.
Hill
, “
Efficient finite element modelling of acoustic radiation forces on inhomogeneous compressible particles
,” Proceedings of ICU (2011), pp.
1
300
.
You do not currently have access to this content.