A nodal discontinuous Galerkin finite element method (DG-FEM) to solve the linear and nonlinear elastic wave equation in heterogeneous media with arbitrary high order accuracy in space on unstructured triangular or quadrilateral meshes is presented. This DG-FEM method combines the geometrical flexibility of the finite element method, and the high parallelization potentiality and strongly nonlinear wave phenomena simulation capability of the finite volume method, required for nonlinear elastodynamics simulations. In order to facilitate the implementation based on a numerical scheme developed for electromagnetic applications, the equations of nonlinear elastodynamics have been written in a conservative form. The adopted formalism allows the introduction of different kinds of elastic nonlinearities, such as the classical quadratic and cubic nonlinearities, or the quadratic hysteretic nonlinearities. Absorbing layers perfectly matched to the calculation domain of the nearly perfectly matched layers type have been introduced to simulate, when needed, semi-infinite or infinite media. The developed DG-FEM scheme has been verified by means of a comparison with analytical solutions and numerical results already published in the literature for simple geometrical configurations: Lamb’s problem and plane wave nonlinear propagation.

1.
D. W.
Kosik
, “
Propagation of a nonlinear seismic pulse in an anelastic homogeneous medium
,”
Geophysics
58
,
949
963
(
1993
).
2.
H. S.
Zheng
,
Z. J.
Zhang
, and
E.
Liu
, “
Non-linear seismic wave propagation in anisotropic media using the flux-corrected transport technique
,”
Geophys. J. Int.
165
,
943
956
(
2006
).
3.
H.
Chen
,
X.
Wang
, and
W.
Lin
, “
Parallel numerical simulation of the ultrasonic waves in a prestressed formation
,”
Ultrasonics
44
,
1013
1017
(
2006
).
4.
O.
Bou
Matar,
V.
Preobrazhensky
, and
P.
Pernod
, “
Two-dimensional axisymmetric numerical simulation of supercritical phase conjugation of ultrasound in active solid media
,”
J. Acoust. Soc. Am.
118
,
2880
2890
(
2005
).
5.
H.
Xu
,
S. M.
Day
, and
J. B. H.
Minster
, “
Two-dimensional linear and nonlinear wave propagation in a half-space
,”
Bull. Seismol. Soc. Am.
89
,
903
917
(
1999
).
6.
H.
Xu
,
S. M.
Day
, and
J. B. H.
Minster
, “
Hysteresis and two-dimensional nonlinear wave propagation in berea sandstone
,”
J. Geophys. Res.
105
,
6163
6175
(
2000
).
7.
K.
Van Den Abeele
,
F.
Schubert
,
V.
Aleshin
,
F.
Windels
, and
J.
Carmeliet
, “
Resonant bar simulations in media with localized damage
,”
Ultrasonics
42
,
1017
1024
(
2004
).
8.
M.
Scalerandi
,
V.
Agostini
,
P. P.
Delsanto
,
K.
Van Den Abeele
, and
P. A.
Johnson
, “
Local interaction simulations approach to modeling nonclassical, nonlinear elastic behavior in solids
,”
J. Acoust. Soc. Am.
113
,
3049
3059
(
2003
).
9.
T.
Goursolle
,
S.
Calle
,
S. D.
Santos
, and
O. Bou
Matar
, “
A two-dimensional pseudospectral model for time reversal and nonlinear elastic wave spectroscopy
,”
J. Acoust. Soc. Am.
122
,
3220
3229
(
2007
).
10.
G.
Zumpano
and
M.
Meo
, “
A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures—A simulation study
,”
Int. J. Solids Struct.
44
,
3666
3684
(
2007
).
11.
E.
Barbieri
,
M.
Meo
, and
U.
Polimeno
, “
Nonlinear wave propagation in damaged hysteretic materials using a frequency domain-based PM space formulation
,”
Int. J. Solids Struct.
46
,
165
180
(
2009
).
12.
R. J.
Leveque
,
Finite Volume Methods for Hyperbolic Problems
(
Cambridge University Press
,
Cambridge
,
2002
), p.
558
.
13.
J. S.
Hesthaven
and
T.
Warburton
, “
Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations
,”
J. Comp. Phys.
181
,
186
221
(
2002
).
14.
Y.
Shi
and
C. H.
Liang
, “
Simulations of the left-handed medium using discontinuous Galerkin method based on the hybrid domains
,”
Prog. Electromagn. Res.
63
,
171
191
(
2006
).
15.
H.
Salman
,
J. S.
Hesthaven
,
T.
Warburton
, and
G.
Haller
, “
Predicting transport by lagrangian coherent structures with a high-order method
,”
Theor. Comput. Fluid Dyn.
21
,
39
58
(
2007
).
16.
J.
Grooss
and
J. S.
Hesthaven
, “
A level set discontinuous Galerkin method for free surface flows
,”
Comput. Methods Appl. Mech. Eng.
195
,
3406
3429
(
2006
).
17.
A. P.
Engsig-Karup
,
J. S.
Hesthaven
,
H. B.
Bingham
, and
P.
Madsen
, “
Nodal DG-FEM solution of high-order Boussinesq-type equations
,”
J. Eng. Math.
56
,
351
370
(
2006
).
18.
E.
Brodal
,
J.
Hesthaven
, and
F.
Melandso
, “
Numerical modeling of double-layered piezoelectric transducer systems using a high-order discontinous Galerkin method
,”
Comput. Struct.
86
,
1747
1756
(
2008
).
19.
V.
Etienne
,
E.
Chaljub
,
J.
Virieux
, and
N.
Glinsky
, “
An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modeling
,”
Geophys. J. Int.
183
,
941
962
(
2010
).
20.
J. S.
Hesthaven
and
T.
Warburton
,
Nodal Discontinuous Galerkin Methods, Algorithms, Analysis, and Applications
(
Springer
.
New York
,
2007
), p.
500
.
21.
M.
Käser
and
M.
Dumbser
, “
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional isotropic case with external source term
,”
Geophys. J. Int.
166
,
855
877
(
2006
).
22.
M.
Dumbser
and
M.
Käser
, “
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case
,”
Geophys. J. Int.
167
,
319
336
(
2006
).
23.
M.
Käser
,
M.
Dumbser
,
J.
de la Puente
, and
H.
Igel
, “
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—III. Viscoelastic attenuation
,”
Geophys. J. Int.
168
,
224
242
(
2007
).
24.
J.
Puente
,
M.
Käser
,
M.
Dumbser
, and
H.
Igel
, “
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—IV. Anisotropy
,”
Geophys. J. Int.
169
,
1210
1228
(
2007
).
25.
M.
Dumbser
,
M.
Käser
, and
E.
Toro
, “
An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—V. Local time stepping and padaptivity
,”
Geophys. J. Int.
171
,
695
717
(
2007
).
26.
J. S.
Hesthaven
and
T.
Warburton
, “
High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem
,”
Philos. Trans. R. Soc. London, Ser. A
362
,
493
524
(
2004
).
27.
M. H.
Carpenter
and
C. A.
Kennedy
, “
Fourth-order 2N-storage Runge-Kutta schemes
,” NASA Technical Memorandum 109112 (NASA Langley Research Center, VA, 1994).
28.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
(
Krieger Publishing Company
,
1990
), Vol.
1
, Chap. 3.
29.
J. O. A.
Robertsson
, “
A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography
,”
Geophysics
61
,
1921
1934
(
1996
).
30.
S.
Cummer
, “
A simple, nearly perfectly matched layer for general electromagnetic media
,”
IEEE Microw. Wirel. Compon. Lett.
13
,
128
130
(
2003
).
31.
W. C.
Chew
,
J. M.
Jin
, and
E.
Michielssen
, “
Complex coordinate stretching as a generalized absorbing boundary condition
,”
Microw. Opt. Technol. Lett.
15
,
363
369
(
1997
).
32.
M.
Kuzuoglu
and
R.
Mittra
, “
Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers
,”
IEEE Microw. Guided Wave Lett.
6
,
447
449
(
1996
).
33.
J. A.
Roden
and
S. D.
Roden
, “
Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media
Microw. Opt. Technol. Lett.
27
,
334
339
(
2000
).
34.
Y.
Li
and
O. Bou
Matar
, “
Convolutional perfectly matched layer for elastic second-order wave equation
,”
J. Acoust. Soc. Am.
127
,
1318
1327
(
2010
).
35.
J.-P.
Berenger
, “
On the reflection from Cummer’s nearly perfectly matched layer
,”
IEEE Microw. Wirel. Compon. Lett.
14
,
334
336
(
2004
).
36.
H.
Lamb
, “
On the propagation of treemors over the surface of an elastic solid
,”
Philos. Trans. R. Soc. Lond. A
203
,
1
42
(
1904
).
37.
P.
Berg
,
F.
If
,
P.
Nielsen
, and
O.
Skovgaard
,
Modeling the Earth for Oil Exploration
(
Pergamon Press
,
Brussels
,
1994
), pp.
421
427
.
38.
J.
Carcione
,
D.
Kosloff
, and
R.
Kosloff
, “
Wave-propagation simulation in an elastic anisotropic (transversely isotropic) solid
,”
Mech. Appl. Math.
41
,
319
345
(
1988
).
39.
A. N.
Norris
, “
Finite-amplitudes waves in solids
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Acoustical Society of America
,
2008
), Chap. 9.
40.
A.
Ben-Menahem
, “
Effect of a non-linear boundary layer on the radiation from earthquakes and underground nuclear explosions
,”
Geophys. J. Int.
132
,
549
576
(
1998
).
41.
K. R.
McCall
, “
Theoretical study of nonlinear elastic wave propagation
,”
J. Geophys. Res.
99
,
2591
2600
(
1994
).
42.
A.
Klöckner
,
T.
Warburton
,
J.
Bridge
, and
J.
Hesthaven
, “
Nodal discontinuous Galerkin methods on graphics processors
,”
J. Comp. Phys.
228
,
7863
7882
(
2009
).
You do not currently have access to this content.