The paper reports on the ability of people to rapidly adapt in localizing virtual sound sources in both azimuth and elevation when listening to sounds synthesized using non-individualized head-related transfer functions (HRTFs). Participants were placed within an audio-kinesthetic Virtual Auditory Environment (VAE) platform that allows association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues through the use of a tracked physical ball manipulated by the subject. This set-up offers a natural perception-action coupling, which is not limited to the visual field of view. The experiment consisted of three sessions: an initial localization test to evaluate participants’ performance, an adaptation session, and a subsequent localization test. A reference control group was included using individual measured HRTFs. Results show significant improvement in localization performance. Relative to the control group, participants using non-individual HRTFs reduced localization errors in elevation by 10° with three sessions of 12 min. No significant improvement was found for azimuthal errors or for single session adaptation.

1.
J.
Blauert
,
Spatial Hearing
(
MIT Press
,
Cambridge
,
1996
), pp.
36
200
.
2.
D. R.
Begault
,
3-D Sound for Virtual Reality and Multimedia
(
Academic Press
,
Cambridge
,
1994
), pp.
117
190
.
3.
E. M.
Wenzel
,
M.
Arruda
,
D. J.
Kistler
, and
F. L.
Wightman
, “
Localization using nonindividualized head-related transfer functions
,”
J. Acoust. Soc. Am.
94
(
1
),
111
123
(
1993
).
4.
J. C.
Middlebrooks
, “
Individual differences in external-ear transfer functions reduced by scaling in frequency
,”
J. Acoust. Soc. Am.
106
(
3
),
1480
1492
(
1999
).
5.
J. C.
Middlebrooks
, “
Virtual localization improved by scaling nonindividualized externalear transfer functions in frequency
,”
J. Acoust. Soc. Am.
106
(
3
),
1493
1510
(
1999
).
6.
S. L.
Lee
,
L. H.
Kim
, and
K. M.
Sung
, “
Reduction of sound localization error for nonindividualized HRTF by directional weighting function
,”
IEICE Trans. Fund. Electron. Commun. Comput. Sci.
87
(
6
),
1531
1536
(
2004
).
7.
Y.
Kahana
and
P. A.
Nelson
, “
Boundary element simulations of the transfer function of human heads and baffled pinnae using accurate geometric models
,”
J. Sound Vib.
300
(
3–5
),
552
579
(
2007
).
8.
B. F. G.
Katz
, “
Boundary element method calculation of individual head-related transfer function. II. Impedance effects and comparisons to real measurements
,”
J. Acoust. Soc. Am.
110
(
5
),
2440
2448
(
2001
).
9.
Y.
Iwaya
, “
Individualization of head-related transfer functions with tournament-style listening test: Listening with other’s ears
,”
Acoust. Sci. Technol.
27
(
6
),
340
343
(
2006
).
10.
B. U.
Seeber
and
H.
Fasti
, “
Subjective selection of non-individual head related transfer function
,” in
Int. Conf. on Auditory Display
(
ICAD
Boston, MA
,
2003
), pp.
259
262
.
11.
V. R.
Algazi
,
C.
Avendano
, and
R. O.
Duda
, “
Estimation of a spherical-head model from anthropometry
,”
J. Audio Eng. Soc.
49
(
6
),
472
479
(
2001
).
12.
V. R.
Algazi
,
C.
Avendano
, and
R. O.
Duda
, “
Elevation localization and head-related transfer function analysis at low frequencies
,”
J. Acoust. Soc. Am.
109
(
3
),
1110
1122
(
2001
).
13.
F. L.
Wightman
and
D. J.
Kistler
, “
Headphone simulation of free-field listening. II: Psychophysical validation
,”
J. Acoust. Soc. Am.
85
(
2
),
868
878
(
1989
).
14.
F. L.
Wightman
and
D. J.
Kistler
, “
Resolution of front-back ambiguity in spatial hearing by listener and source movement
,”
J. Acoust. Soc. Am.
105
(
5
),
2841
2853
(
1999
).
15.
E. I.
Knudsen
, “
The role of auditory experience in the development and maintenance of sound localization
,”
Trends Neurosci.
7
(
9
),
326
330
(
1984
).
16.
A. S.
Keuroghlian
and
E. I.
Knudsen
, “
Adaptive auditory plasticity in developing and adult animals
,”
Prog. Neurobiol.
82
(
3
),
109
121
(
2007
).
17.
P. T.
Young
, “
Auditory localization with acoustical transposition of the ears
,”
J. Exp. Psychol.
11
(
6
),
399
429
(
1928
).
18.
P. M.
Hofman
,
J. G.
Van Riswick
, and
A. J.
Van Opstal
, “
Relearning sound localization with new ears
,
Nat. Neurosci.
1
(
5
),
417
421
(
1998
).
19.
M. P.
Zwiers
,
A. J.
Van Opstal
, and
G. D.
Paige
, “
Plasticity in human sound localization induced by compressed spatial vision
,”
Nat. Neurosci.
6
(
2
),
175
181
(
2003
).
20.
M. P.
Zwiers
,
A. J.
Van Opstal
, and
J. R.
Cruysberg
, “
A spatial hearing deficit in early-blind humans
,”
J. Neurosci.
21
(
9
),
1
5
(
2001
).
21.
M.-E.
Doucet
,
J.-P.
Guillemot
,
M.
Lassonde
,
J.-P.
Gagné
,
C.
Leclerc
, and
F.
Lepore
, “
Blind subjects process auditory spectral cues more efficiently than sighted individuals
,”
Exp. Brain Res.
160
(
2
),
194
202
(
2005
).
22.
N.
Lessard
,
M.
Paré
,
F.
Lepore
, and
M.
Lassonde
, “
Early-blind human subjects localize sound sources better than sighted subjects
,”
Nature
395
(
6699
),
278
280
(
1998
).
23.
J.
Lewald
, “
Vertical sound localization in blind humans
,”
Neuropsychologia
40
(
12
),
1868
1872
(
2002
).
24.
M. P.
Zwiers
,
A. J.
Van Opstal
, and
J. R.
Cruysberg
, “
Two-dimensional sound-localization behavior of early-blind humans
,”
Exp. Brain Res.
140
(
2
),
206
222
(
2001
).
25.
B. G.
Shinn-Cunningham
,
N. I.
Durlach
, and
R. M.
Held
, “
Adapting to supernormal auditory localization cues. I. Bias and resolution
,”
J. Acoust. Soc. Am.
103
(
6
),
3656
3666
(
1998
).
26.
B. G.
Shinn-Cunningham
,
N. I.
Durlach
, and
R. M.
Held
, “
Adapting to supernormal auditory localization cues. II. Constraints on adaptation of mean response
,”
J. Acoust. Soc. Am.
103
(
6
),
3667
3676
(
1998
).
27.
P.
Zahorik
,
P.
Bangayan
,
V.
Sundareswaran
,
K.
Wang
, and
C.
Tam
, “
Perceptual recalibration in human sound localization: learning to remediate front-back reversals
.”
J. Acoust. Soc. Am.
120
(
1
),
343
359
(
2006
).
28.
A.
Honda
,
H.
Shibata
,
J.
Gyoba
,
K.
Saitou
,
Y.
Iwaya
, and
Y.
Suzuki
, “
Transfer effects on sound localization performances from playing a virtual three-dimensional auditory game
,”
Appl. Acoust.
68
(
8
),
885
896
(
2007
).
29.
A.
Blum
,
B. F. G.
Katz
, and
O.
Warusfel
, “
Eliciting adaptation to non-individual HRTF spectral cues with multi-modal training
,” in
Proc. CFA/DAGA
(
2004
).
30.
IRCAM LISTEN HRTF database, available at http://recherche.ircam.fr/equipes/salles/listen/ (Last viewed 10/28/11).
31.
B. F. G.
Katz
and
G.
Parseihian
, “
Percptually based head-related transfert function database optimization
,”
J. Acoust. Soc. Am.
131
(
2
),
EL99
EL105
(
2012
).
32.
B. F. G.
Katz
,
E.
Rio
, and
L.
Picinali
, “
LIMSI Spatialization Engine
,” Inter Deposit Digital Number: F. 001.340014.000.S.P. 2010.000.31235.
33.
L.
Haber
,
R. N.
Haber
,
S.
Penningroth
,
K.
Novak
, and
H.
Radgowski
, “
Comparison of nine methods of indicating the direction to objects: Data from blind adults
,”
Perception
22
(
1
),
35
47
(
1993
).
34.
F.
Dramas
,
B. F. G.
Katz
, and
C.
Jouffrais
, “
Auditory-guided reaching movements in the peripersonal frontal space (poster)
,” in Acoustics 08, Paris, 29/06/2008-04/07/2008,
J. Acoust. Soc. Am.
123
,
3723
(
2008
).
35.
M.
Morimoto
and
H.
Aokata
, “
Localization cues of sound sources in the upper hemisphere
,”
J. Acoust. Soc. Jpn.
5
(
3
),
165
173
(
1984
).
36.
E. M.
Wenzel
,
F. L.
Wightman
, and
D. J.
Kistler
, “
Localization with non-individualized virtual acoustic display cues
,” in
CHI’91: Proceedings of the SIGCHI Conference on Human factors in Computing Systems
(
ACM
,
New York
,
1991
), pp.
351
359
.
37.
R. L.
Martin
,
K. I.
McAnally
, and
M. A.
Senova
, “
Free-field equivalent localization of virtual audio
,”
J. Audio Eng. Soc.
49
(
1/2
),
14
22
(
2001
).
38.
D.
Yamagishi
and
K.
Ozawa
, “
Effects of timbre on learning to remediate sound localization in the horizontal plane
,” in
Principles and Applications of Spatial Hearing
(
World Scientific
,
Singapore
,
2011
).
You do not currently have access to this content.