This paper applies Bayesian inversion to bottom-loss data derived from wind-driven ambient noise measurements from a vertical line array to quantify the information content constraining seabed geoacoustic parameters. The inversion utilizes a previously proposed ray-based representation of the ambient noise field as a forward model for fast computations of bottom loss data for a layered seabed. This model considers the effect of the array’s finite aperture in the estimation of bottom loss and is extended to include the wind speed as the driving mechanism for the ambient noise field. The strength of this field relative to other unwanted noise mechanisms defines a signal-to-noise ratio, which is included in the inversion as a frequency-dependent parameter. The wind speed is found to have a strong impact on the resolution of seabed geoacoustic parameters as quantified by marginal probability distributions from Bayesian inversion of simulated data. The inversion method is also applied to experimental data collected at a moored vertical array during the MAPEX 2000 experiment, and the results are compared to those from previous active-source inversions and to core measurements at a nearby site.

1.
C. H.
Harrison
and
D. G.
Simons
, “
Geoacoustic inversion of ambient noise: A simple method
,”
J. Acoust. Soc. Am.
112
,
1377
1389
(
2002
).
2.
M.
Siderius
,
C. H.
Harrison
, and
M. B.
Porter
, “
A passive fathometer technique for imaging seabed layering using ambient noise
,”
J. Acoust. Soc. Am.
120
,
1315
1323
(
2006
).
3.
M.
Siderius
and
C. H.
Harrison
, “
High-frequency geoacoustic inversion of ambient noise data using short arrays
,”
AIP Conf. Proc.
728
,
22
31
(
2004
).
4.
J. I.
Arvelo
, “
Robustness and constraints of ambient noise inversion
,”
J. Acoust. Soc. Am.
123
,
679
686
(
2008
).
5.
J.
Dettmer
,
S. E.
Dosso
,
M. K.
Prior
,
C. H.
Harrison
, and
N. R.
Chapman
,“
Geoacoustic inversion of ambient noise reflection-loss data
,” in
Proceedings of the Seventh European Conference on Underwater Acoustics
, Delft, The Netherlands (
2004
), pp.
511
516
.
6.
J.
Dettmer
,
C. W.
Holland
, and
S. E.
Dosso
, “
Analyzing lateral seabed variability with Bayesian inference of seabed reflection data
,”
J. Acoust. Soc. Am.
126
,
56
69
(
2009
).
7.
W. A.
Kuperman
and
F.
Ingenito
, “
Spatial correlation of surface generated noise in a stratified ocean
,”
J. Acoust. Soc. Am.
67
,
1988
1996
(
1980
).
8.
C. H.
Harrison
, “
Formulas for ambient noise level and coherence
,”
J. Acoust. Soc. Am.
99
,
2055
2066
(
1996
).
9.
H.
Schmidt
, oases version 3.1 User guide and reference manual; http://acoustics.mit.edu/faculty/henrik/oases.html (Last viewed 08/02/
2011
).
10.
F.
Ingenito
and
S. N.
Wolf
, “
Site dependence of wind-dominated ambient noise in shallow water
,”
J. Acoust. Soc. Am.
85
,
141
145
(
1988
).
11.
M.
Siderius
,
H.
Song
,
P.
Gerstoft
,
W. S.
Hodgkiss
,
P.
Hursky
, and
C. H.
Harrison
, “
Adaptive passive fathometer processing
,”
J. Acoust. Soc. Am.
127
,
2193
2200
(
2010
).
12.
S. E.
Dosso
and
P. L.
Nielsen
, “
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband shallow water data
,”
J. Acoust. Soc. Am.
111
,
143
159
(
2002
).
13.
C. F.
Huang
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Uncertainty analysis in matched-field geoacoustic inversions
,”
J. Acoust. Soc. Am.
119
,
197
207
(
2006
).
14.
S. E.
Dosso
and
J.
Dettmer
, “
Bayesian matched-field geoacoustic inversion
,”
IOP J. Inv. Problems
27
,
23
(
2011
).
15.
J.
Dettmer
,
C. W.
Holland
, and
S. E.
Dosso
, “
Joint time/frequency-domain inversion of reflection data for seabed geoacoustic profiles and uncertainties
,”
J. Acoust. Soc. Am.
123
,
1306
1317
(
2008
).
16.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science, New Ser.
220
,
671
680
(
1983
).
17.
P.
Gerstoft
and
Z.
Michalopoulou
, “
Global optimization in matched field inversion
,” in
4th European Conference on Underwater Acoustics (Italian National Research Council)
, Rome, (
2000
) pp.
27
32
.
18.
A.
Basu
and
L. N.
Frazer
, “
Rapid determination of the critical temperature in simulated annealing inversion
,”
Science
21
,
1409
1412
(
1990
).
19.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equations of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
20.
W. K.
Hastings
, “
Monte Carlo sampling methods using markov chains and their applications
,”
Biometrika
57
,
97
109
(
1970
).
21.
S. E.
Dosso
and
M. J.
Wilmut
, “
Uncertainty estimation in simultaneous Bayesian tracking and environmental inversion
,”
J. Acoust. Soc. Am.
124
,
82
97
(
2008
).
22.
M. D.
Collins
and
L.
Fishman
, “
Efficient navigation of parameter landscapes
,”
J. Acoust. Soc. Am.
98
,
1637
1944
(
1995
).
23.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
American Institute of Physics
,
New York
,
1994
).
24.
M.
Schulkin
,“
Sea surface loss in surface ducts and shallow water: a historical perspective
,” in
Proceedings of the IEEE Oceans’86 Conference
, Washington, D.C. (
1986
), pp.
325
331
.
25.
S. E.
Dosso
,
P. L.
Nielsen
, and
M. J.
Wilmut
, “
Data error covariance in matched-field geoacoustic inversion
,”
J. Acoust. Soc. Am.
119
,
208
219
(
2006
).
26.
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Model selection and Bayesian inference for high resolution seabed reection inversion
,”
J. Acoust. Soc. Am.
125
,
706
716
(
2009
).
27.
D. R.
Jackson
and
M. D.
Richardson
,
High-Frequency Seafloor Acoustics
(
Springer Science and Business Media
,
New York
,
2007
).
You do not currently have access to this content.