Exploding gas-filled balloons are common chemistry demonstrations. They also provide an entertaining and educational means to experimentally verify nonlinear acoustical theory as described by the Earnshaw solution to the lossless Burgers equation and weak-shock theory. This article describes the theory, the demonstration, and the results of a propagation experiment carried out to provide typical results. Data analysis shows that an acetylene–oxygen balloon produces an acoustic shock whose evolution agrees well with weak-shock theory. On the other hand, the pressure wave generated by a hydrogen–oxygen balloon also propagates nonlinearly, but does not approach N-wave-like, weak-shock formation over the propagation distance. Overall, the experiment shows that popular demonstrations of chemical reactions can be extended from chemistry classrooms to a pedagogical tool for the student of advanced physical acoustics.

1.
C. H.
Crouch
,
A. P.
Fagen
,
J. P.
Callan
, and
E.
Mazur
, “
Classroom demonstrations: Learning tools or entertainment?
,”
Am. J. Phys.
72
,
835
838
(
2004
).
2.
D. R.
Sokoloff
and
R. K.
Thornton
,
Interactive Lecture Demonstrations: Active Learning in Introductory Physics
(
Wiley
,
Hoboken, NJ
,
2004
), pp,
1
374
.
3.
D. A.
Russell
, “
Basketballs as spherical acoustic cavities
,”
Am. J. Phys.
78
,
549
554
(
2010
).
4.
M. D.
Gardner
,
K. L.
Gee
, and
G.
Dix
, “
An investigation of Rubens flame tube resonances
,”
J. Acoust. Soc. Am.
125
,
1285
1292
(
2009
).
5.
R. M.
Keolian
, “
A demonstration apparatus of the cochlea
,”
J. Acoust. Soc. Am.
101
,
1199
1201
(
1997
).
6.
G. C.
Maling
, Jr.
, “
Simplified analysis of the Rijke phenomenon
,”
J. Acoust. Soc. Am.
35
,
1058
1060
(
1963
).
7.
D. C.
Thomas
,
K. L.
Gee
, and
R. S.
Turley
, “
A balloon lens: Acoustic scattering from a penetrable sphere
,”
Am. J. Phys
77
,
197
203
(
2009
).
8.
R. R.
Boullosa
and
F.
Orduña-Bustamante
, “
Acoustic levitation at very low frequencies
,”
Acta Acust.
96
,
376
382
(
2010
).
9.
W. D.
Hayes
and
H. L.
Runyan
, Jr.
, “
Sonic-boom propagation through a stratified atmosphere
,”
J. Acoust. Soc. Am.
51
,
695
701
(
1970
).
10.
K. L.
Gee
,
V. W.
Sparrow
,
M. M.
James
,
J. M.
Downing
,
C. M.
Hobbs
,
T. B.
Gabrielson
, and
A. A.
Atchley
, “
The role of nonlinear effects in the propagation of noise from high-power jet aircraft
,”
J. Acoust. Soc. Am.
123
,
4082
4093
(
2008
).
11.
W. E.
Baker
,
Explosions in Air
(
University of Texas Press
,
Austin, TX
,
1973
).
12.
M.
Shaw
and
K. L.
Gee
, “
Acoustical analysis of an indoor test facility for a 30-mm Gatling gun
,”
Noise Cont. Eng. J.
58
,
611
620
(
2010
).
13.
L.
Howle
,
D. G.
Schaeffer
,
M.
Shearer
, and
P.
Zhong
, “
Lithotripsy: The treatment of kidney stones with shock waves
,”
SIAM Rev.
40
,
356
371
(
1998
).
14.
R. O.
Cleveland
and
O. A.
Sapozhnikov
, “
Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy
,”
J. Acoust. Soc. Am.
118
,
2667
2676
(
2005
).
15.
A. D.
Pierce
,
Acoustics: An Introduction to its Physical Principles and Applications
(
Acoustical Society of America
,
Woodbury, NY
,
1989
), pp.
566
617
.
16.
D. T.
Blackstock
,
M. F.
Hamilton
, and
A. D.
Pierce
, “
Progressive waves in lossless and lossy fluids
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic
,
San Diego
,
1998
), Chap. 4.
17.
D. T.
Blackstock
, “
On plane, spherical, and cylindrical sound waves of finite amplitude in lossless fluids
,”
J. Acoust. Soc. Am.
36
,
217
219
(
1964
).
18.
F. M.
Pestorius
and
D. T.
Blackstock
, “
Propagation of finite-amplitude noise
,” in
Finite-Amplitude Wave Effects in Fluids
, edited by
L.
Bjorno
(
IPC Science and Technology
,
Guildford, Surrey, UK
,
1973
), pp.
24
29
.
19.
H. E.
Bass
,
R.
Raspet
,
J. P.
Chambers
, and
M.
Kelly
, “
Modification of sonic boom wave forms during propagation from the source to the ground
,”
J. Acoust. Soc. Am.
111
,
481
486
(
2002
).
20.
D. T.
Blackstock
, “
Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude
,”
J. Acoust. Soc. Am.
39
,
1019
1026
(
1966
).
21.
H. W.
Liepmann
and
A.
Roshko
,
Elements of Gas Dynamics
(
Dover
,
New York
,
2002
), pp.
57
61
.
22.
S.
Temkin
, “
Attenuation of guided, weak sawtooth waves
,”
J. Acoust. Soc. Am.
46
,
267
271
(
1968
)
23.
D. T.
Blackstock
, “
Propagation of plane sound waves of finite amplitude in nondissipative fluids
,”
J. Acoust. Soc. Am.
34
,
9
30
(
1962
).
24.
For more on this topic, see Ref. 22 and
F. M.
Pestorius and
S. B.
Williams
, “
Upper limit on the use of weak-shock theory
,”
J. Acoust. Soc. Am.
55
,
1334
1335
(
1974
).
25.
P. H.
Rogers
, “
Weak-shock solution for underwater explosive shock waves
,”
J. Acoust. Soc. Am.
62
,
1412
1419
(
1977
).
26.
D. T.
Blackstock
, “
Propagation of a weak shock followed by a tail of arbitrary waveform
,”
Proceedings of the 11th International Congress on Acoustics
,
Paris, France
(
1983
), Vol.
1
, pp.
305
308
.
27.
R. M.
Corless
,
G. H.
Gonnet
,
D. E. G.
Hare
,
D. J.
Jeffrey
, and
D. E.
Knuth
, “
On the Lambert W function
,”
Adv. Comp. Math.
5
,
329
359
(
1996
).
28.
A conversation with D. T. Blackstock revealed that he actually used this problem as a homework assignment in his nonlinear acoustics course.
29.
MATLAB
, Release 2010 (The Mathworks, Inc., Natick, MA,
2010
).
30.
H. E.
Bass
,
L. C.
Sutherland
, and
A. J.
Zuckerwar
, “
Atmospheric absorption of sound: Update
,”
J. Acoust. Soc. Am.
88
,
2019
2021
(
1990
);
H. E.
Bass
,
L. C.
Sutherland
, and
A. J.
Zuckerwar
, “
Erratum: Atmospheric absorption of sound: Further developments
,”
J. Acoust. Soc. Am.
99
,
1259
(
1996
).
31.
D. T.
Blackstock
, “
Generalized Burgers equation for plane waves
,”
J. Acoust. Soc. Am.
77
,
2050
2053
(
1985
).
32.
M. F.
Hamilton
,
Y. A.
Il’inskii
, and
E. A.
Zabolotskaya
, “
Dispersion
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic
,
San Diego
,
1998
), Chap. 5.
33.
K. L.
Gee
,
J. A.
Vernon
, and
J. H.
Macedone
, “
Auditory risk of exploding hydrogen–oxygen balloons
,”
J. Chem. Ed.
87
,
1039
1044
(
2010
).
34.
W. J.
Murphy
and
R. L.
Tubbs
, “
Assessment of noise exposure for indoor and outdoor firing ranges
,”
J. Occup. Environ. Hyg.
4
,
688
697
(
2007
).
35.
T. B.
Gabrielson
,
T. M.
Marston
, and
A. A.
Atchley
, “
Nonlinear propagation modeling: Guidelines for supporting measurements
,”
Proc. Noise-Con
114
,
275
285
(
2005
).
36.
ANSI S1.13-2005
,
Measurement of Sound Pressure Levels in Air
(
Acoustical Society of America
,
Melville, NY
,
2005
).
37.
M. R.
Shepherd
,
K. L.
Gee
, and
M. S.
Wochner
, “
Short-range shock formation and coalescence in numerical simulation of broadband noise propagation
,”
J. Acoust. Soc. Am.
126
,
2886
2893
(
2009
).
You do not currently have access to this content.