An inversion scheme is proposed, relying upon the inversion of the noise of a moving ship measured on a single distant hydrophone. The spectrogram of the measurements exhibits striations which depend on waveguide parameters. The periodic behavior of striations versus range are used to estimate the differences of radial wavenumber between couples of propagative modes at a given frequency. These wavenumber differences are stacked for several frequencies to form the relative dispersion curves. Such relative dispersion curves can be synthesized using a propagation model feeded with a bottom geoacoustic model. Inversion is performed by looking for the bottom properties that optimize the fit between measured and predicted relative dispersion curves. The inversion scheme is tested on simulated data. The conclusions are twofold: (1) a minimum 6 dB signal to noise ratio is required to obtained an unbiased estimate of compressional sound speed in the bottom with a 3 m s−1 standard deviation; however, even with low signal to noise ratio, the estimation error remains bounded and (2) in the case of a multi-layer bottom, the scheme produces a single depth-average compressional sound speed. The inversion scheme is applied on experimental data. The results are fully consistent with a core sample measured around the receiving hydrophone.

1.
A.
Baggeroer
,
W.
Kuperman
, and
P.
Mikhalevsky
, “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Oceanic Eng.
18
,
401
424
(
1993
).
2.
J.
Hermand
, “
Broad-band geoacoustic inversion in shallow water from waveguide impulse response measurements on a single hydrophone: Theory andexperimental results
,”
IEEE J. Oceanic Eng.
24
,
41
66
(
1999
).
3.
J.
Glattetre
,
T.
Knudsen
, and
K.
Søstrand
, “
Mode interference and mode filtering in shallow water: A comparison of acoustic measurements and modeling
,”
J. Acoust. Soc. Am.
86
,
680
690
(
1989
).
4.
G.
Potty
,
J.
Miller
,
J.
Lynch
, and
K.
Smith
, “
Tomographic inversion for sediment parameters in shallow water
,”
J. Acoust. Soc. Am.
108
,
973
986
(
2000
).
5.
B.
Nicolas
,
J.
Mars
, and
J.
Lacoume
, “
Geoacoustical parameters estimation with impulsive and boat-noise sources
,”
IEEE J. Oceanic Eng.
28
,
494
501
(
2003
).
6.
J.
Bonnel
,
B.
Nicolas
,
J.
Mars
, and
S.
Walker
, “
Estimation of modal group velocities with a single receiver for geoacoustic inversion in shallow water
,”
J. Acoust. Soc. Am.
128
,
719
727
(
2010
).
7.
W.
Richardson
,
C.
Greene
, Jr.
,
C.
Malme
, and
D.
Thomson
,
Marine Mammals and Noise
(
Academic Press
,
San Diego, CA
,
1995
),
576
pp.
8.
B.
Southall
,
A.
Bowles
,
W.
Ellison
,
J.
Finneran
,
R.
Gentry
,
C.
Greene
, Jr.
,
D.
Kastak
,
D.
Ketten
,
J.
Miller
,
P.
Nachtigall
,
J. W.
Richardson
,
J. A.
Thomas
, and
P. L.
Tyack
, “
Marine mammal noise exposure criteria: Initial scientific recommendations
,”
J. Acoust. Soc. Am.
125
,
2517
(
2009
).
9.
J.
Hildebrand
, “
Anthropogenic and natural sources of ambient noise in the ocean
,”
Mar. Ecol. Prog. Ser.
395
,
5
20
(
2009
).
10.
N.
Carbone
,
G.
Deane
, and
M.
Buckingham
, “
Estimating the compressional and shear wave speeds of a shallow water seabed from the vertical coherence of ambient noise in the water column
,”
J. Acoust. Soc. Am.
103
,
801
(
1998
).
11.
C.
Gervaise
,
S.
Vallez
,
C.
Ioana
,
Y.
Stéphan
, and
Y.
Simard
, “
Passive acoustic tomography: Review, new concepts and application using marine mammals
,”
J. Mar. Biol. Assoc. U.K.
87
,
5
10
(
2007
).
12.
A.
Thode
, “
Source ranging with minimal environmental information using a virtual receiver and waveguide invariant theory
,”
J. Acoust. Soc. Am.
108
,
1582
1594
(
2000
).
13.
C.
Harrison
and
D.
Simons
, “
Geoacoustic inversion of ambient noise: A simple method
,”
J. Acoust. Soc. Am.
112
,
13771389
(
2002
).
14.
M.
Siderius
,
C.
Harrison
, and
M.
Porter
, “
A passive fathometer technique for imaging seabed layering using ambient noise
,”
J. Acoust. Soc. Am.
120
,
1315
1323
(
2006
).
15.
M.
Siderius
,
H.
Song
,
P.
Gerstoft
,
W.
Hodgkiss
,
P.
Hursky
, and
C.
Harrison
, “
Adaptive passive fathometer processing
,”
J. Acoust. Soc. Am.
127
,
2193
2200
(
2010
).
16.
A.
Thode
,
P.
Gerstoft
,
W.
Burgess
,
K.
Sabra
,
M.
Guerra
,
M.
Stokes
,
M.
Noad
, and
D.
Cato
, “
A portable matched-field processing system using passive acoustic time synchronization
,”
IEEE J. Oceanic Eng.
31
,
696
710
(
2007
).
17.
D.
Battle
,
P.
Gerstoft
,
W.
Kuperman
,
W.
Hodgkiss
, and
M.
Siderius
, “
Geoacoustic inversion of tow-ship noise via near-field-matched-field processing
,”
IEEE J. Oceanic Eng.
28
,
454
467
(
2005
).
18.
M.
Nicholas
,
J.
Perkins
,
G.
Orris
,
L.
Fialkowski
, and
G.
Heard
, “
Environmental inversion and matched-field tracking with a surface ship and an L-shaped receiver array
,”
J. Acoust. Soc. Am.
116
,
2891
2901
(
2004
).
19.
R.
Koch
and
D.
Knobles
, “
Geoacoustic inversion with ships as sources
,”
J. Acoust. Soc. Am.
117
,
626
637
(
2005
).
20.
S.
Jesus
,
C.
Soares
,
E.
Coelho
, and
P.
Picco
, “
An experimental demonstration of blind ocean acoustic tomography
,”
J. Acoust. Soc. Am.
119
,
1420
1431
(
2006
).
21.
D.
Tollefsen
and
S.
Dosso
, “
Bayesian geoacoustic inversion of ship noise on a horizontal array
,”
J. Acoust. Soc. Am.
124
,
788
795
(
2008
).
22.
S.
Stotts
and
R.
Koch
, “
Geoacoustic inversions and localizations with adaptively beam-formed data from a surface ship of opportunity source
,”
J. Acoust. Soc. Am.
127
,
84
95
(
2010
).
23.
S.
Stotts
,
R.
Koch
,
S.
Joshi
,
V.
Nguyen
,
V.
Ferreri
, and
D.
Knobles
, “
Geoacoustic Inversions of Horizontal and Vertical Line Array Acoustic Data From a Surface Ship Source of Opportunity
,”
IEEE J. Oceanic Eng.
35
,
79
102
(
2010
).
24.
K.
Heaney
, “
Rapid geoacoustic characterization using a surface ship of opportunity
,”
IEEE J. Oceanic Eng.
29
,
88
99
(
2004
).
25.
A.
Turgut
,
M.
Orr
, and
D.
Rouseff
, “
Broadband source localization using horizontal-beam acoustic intensity striations
,”
J. Acoust. Soc. Am.
127
,
73
83
(
2010
).
26.
D.
Rouseff
and
L.
Zurk
, “
Striation-based beamforming using the waveguide invariant for passive sonar
,”
J. Acoust. Soc. Am.
129
,
2601
(
2011
).
27.
Q.
Ren
and
J.
Hermand
, “
Striation processing for sediment geoacoustic characterization
,”
J. Acoust. Soc. Am.
129
,
2426
(
2011
).
28.
G.
D’Spain
and
W.
Kuperman
, “
Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth
,”
J. Acoust. Soc. Am.
106
,
2454
2468
(
1999
).
29.
E.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1340
(
1980
).
30.
See website of European Project Euromarsin, http://www.eu-seased.net (Last viewed April 21,
2011
). This site presents an archive of sediment core samples collected along the European sea coast.
31.
S.
Vallez
,
C.
Gervaise
,
A.
Khenchaf
,
Y.
Stéphan
, and
M.
André
, “
Inversion géoacoustique d’un canal trés petits fonds à partir des navires en mouvement traitement incohérent (Very shallow water geoacoustic inversion with ship noise using incoherent signal processing tools)
,”
Trait. Signal
25
,
151
163
(
2008
).
32.
C.
Erbe
, “
Underwater noise of whale-watching boats and potential effects on killer whales (orcinus orca), based on an acoustic impact model
,”
Mar. Mamm. Sci.
18
,
394
418
(
2002
).
33.
C.
Harrison
, “
The relation between the waveguide invariant, multipath impulse response, and ray cycles
,”
J. Acoust. Soc. Am.
129
,
2863
2877
(
2011
).
34.
F.
Jensen
,
W.
Kuperman
, and
B.
Michael
,
Computational Ocean Acoustics
(
AIP
,
New York
,
1994
),
595
pp.
35.
H.
Song
and
A.
Baggeroer
, “
The resolution of modal doppler shifts in a dispersive oceanic waveguide
,”
J. Acoust. Soc. Am.
88
,
268
282
(
1990
).
36.
P.
Lim
and
J.
Ozard
, “
On the underwater acoustic field of a moving point source. I. Range-independent environment
,”
J. Acoust. Soc. Am.
95
,
131
137
(
1994
).
37.
E.
Westwood
,
C.
Tindle
, and
N.
Chapman
, “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
,
3631
(
1996
).
38.
F.
Hlawatsch
and
G.
Boudreaux-Bartels
, “
Linear and quadratic time-frequency signal representations
,”
IEEE Signal Process. Mag.
9
,
21
67
(
1992
).
39.
See http://www.marinetraffic.com/ais/ (Last viewed October 28,
2011
), dedicated to access shipping traffic in real time world wide coverage thanks to Automatic Identification System.
40.
S.
Stergiopoulos
,
Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real Time Systems
(
Chemical Rubber Company Press
,
Boca Raton, FL
,
2000
),
752
pp.
41.
R.
Moose
,
D.
McCabe
, and
H.
VanLandingham
, “
Passive tracking of underwater maneuvering targets
,” IEEE Conf. Decision Control
17
,
99
103
(
1978
).
42.
J.
Nitsche
and
R.
Spooner
, “
Performance estimates of doppler tracking systems
IEEE Int. Conf. Eng. Ocean Environ.
38
,
86
91
(
1973
).
You do not currently have access to this content.