Modeling laryngeal aerodynamics requires specification of the glottal geometry. Changing the glottal exit radius alters the intraglottal pressure distributions in the converging glottis [Scherer et al., J. Acoust. Soc. Am. 110, 2267–2269 (2001)]. This study examined the effects of the glottal entrance radius on the intraglottal pressure distributions for divergent angles of 5°, 10°, 20°, 30°, and 40°. Glottal airflow and minimal glottal diameter were held constant at 73.2 cm3/s and 0.02 cm, respectively. The computational code FLUENT was used to obtain the pressure distributions. Results suggest that a smaller glottal entrance radius tends to (1) lower the transglottal pressure (reduce glottal flow resistance), although this is angle dependent, (2) make the pressure dip near the glottal entrance more negative in value, (3) increase the slope of the pressure distribution just upstream of the glottal entrance, and (4) make the initial pressure recovery (rise) in the glottis steeper. A general empirical equation for transglottal pressure as a function of radius, angle, and separation point location is offered. These results suggest that glottal entrance curvature for the divergent glottis significantly affects the driving pressures on the vocal folds, and needs to be well specified when building computational and physical models.

1.
Agarwal
,
M.
(
2004
).
The False Vocal Folds and Their Effect on Translaryngeal Airflow Resistance
(
Bowling Green State University
,
Bowling Green, OH
), Chap. 3, pp.
123
134
.
2.
Alipour
,
F.
,
Fan
,
C.
, and
Scherer
,
R. C.
(
1996
). “
A numerical simulation of laryngeal flow in a forced-oscillation glottal model
,”
Comput. Speech Lang.
10
,
75
93
.
3.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2000
). “
Dynamic glottal pressures in an excised hemilarynx model
,”
J. Voice
14
,
443
454
.
4.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2004
). “
Flow separation in a computational oscillating vocal fold model
,”
J. Acoust. Soc. Am.
116
,
1710
1719
.
5.
Blevins
,
R. D.
(
1984
).
Applied Fluid Dynamics Handbook
(
Van Nostrand Reinhold
,
New York
), Chap. 10, pp.
279
280
.
6.
Gauffin
,
J.
,
Binh
,
N.
,
Ananthapadmanabha
,
T. V.
, and
Fant
,
G.
, (
1983
). “
Glottal geometry and volume velocity waveform
,” in
Vocal Fold Physiology: Contemporary Research and Clinical Issues
, edited by
D. M.
Bless
, and
J. H.
Abbs
. (
College-Hill
,
San Diego, CA
), pp.
194
201
.
7.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
, (
1972
). “
Synthesis of voiced sounds from a two-mass model of the vocal cords
,”
Bell Syst. Tech. J.
51
,
1233
1268
.
8.
Kline
,
S. J.
, (
1959
). “
On the nature of stall
,”
J. Basic Eng.
81
,
305
319
.
9.
Li
,
S.
,
Scherer
,
R. C.
,
Wan
,
M.
,
Wang
,
S.
, and
Wu
,
H.
, (
2006a
). “
Numerical study of the effects of inferior and superior vocal fold surface angles on vocal fold pressure distributions
,”
J. Acoust. Soc. Am.
119
,
3003
3010
.
10.
Li
,
S.
,
Scherer
,
R. C.
,
Wan
,
M.
,
Wang
,
S.
, and
Wu
,
H.
(
2006b
). “
The effect of glottal angle on intraglottal pressure
,”
J. Acoust. Soc. Am.
119
,
539
548
.
11.
Mongeau
,
L.
,
Franchek
,
C.
,
Coker
,
R.
, and
Kubli
,
R. A.
, (
1997
). “
Characteristics of a pulsating jet through a small modulated orifice, with applications to voice production
,”
J. Acoust. Soc. Am.
102
,
1121
1134
.
12.
Pelorson
,
X.
,
Hirschberg
,
A.
,
Wijnands
,
A. P. J.
, and
Auregan
,
Y.
, (
1994
). “
Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model
,”
J. Acoust. Soc. Am.
96
,
3416
3431
.
13.
Scherer
,
R. C.
,
Shinwari
,
D.
,
Witt
,
K. J. D.
,
Zhang
,
C.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
, (
2001a
). “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees
,”
J. Acoust. Soc. Am.
109
,
1616
1630
.
14.
Scherer
,
R. C.
,
Torkaman
,
S.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
, (
2010
). “
Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape
,”
J. Acoust. Soc. Am.
128
,
828
838
.
15.
Scherer
,
R. C.
,
Witt
,
K. J. D.
, and
Kucinschi
,
B. R.
(
2001b
). “
The effect of exit radii on intraglottal pressure distributions in the convergent glottis (L)
,”
J. Acoust. Soc. Am.
110
,
2267
2269
.
16.
Shinwari
,
D.
,
Scherer
,
R. C.
,
J. DeWitt
,
K.
, and
Afjeh
,
A. A.
(
2003
). “
Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees
,”
J. Acoust. Soc. Am.
113
,
487
497
.
17.
van den Berg
,
Jw.
,
Zantema
,
J. T.
, and
Doornenbal
,
P. J.
(
1957
). “
On the air resistance and the Bernoulli effect of the human larynx
,”
J. Acoust. Soc. Am.
29
,
626
631
.
18.
Vilain
,
C. E.
,
Pelorson
,
X.
,
Fraysse
,
C.
,
Deverge
,
M.
,
Hirschberg
,
A.
, and
Willems
,
J.
(
2004
). “
Experimental validation of a quasi-steady theory for the flow through the glottis
,”
J. Sound Vib.
276
,
475
490
.
You do not currently have access to this content.