The acoustical properties of wood for instruments have mostly been studied on a few archetypal woods in Western musical instruments. The objective of this paper is to extend knowledge on the diversity in wood properties and uses in instruments from different geo-cultural areas. A wide set of data has been collected on vibrational properties of 452 species, through experiments and literature survey. Property distributions within broad categories confirm the known characteristics of softwoods, but also evidence specificities of tropical hardwoods compared to temperate-zone species. A relational database has been created to link wood properties and uses in musical instruments of the world. Two case studies on acoustically important functions in different geo-cultural areas show contrasted trends: (i) species used for xylophone bars and slit-drums in different continents all share a very low internal friction, (ii) on the contrary, the only characteristic common to soundboards’ woods is a lower than average density, whereas their acoustical properties differ widely between them and with the “Western” standard in wood choice. All these materials being nevertheless adapted to their context, cultural specificities in the structure, playing mode and “sonority” preferences should also be taken into account.

1.
Aizawa
,
H.
(
1998
).
“Frequency dependence of vibration properties of wood in the longitudinal direction”
(in Japanese), Master thesis, Faculty of Engineering,
Kyoto University
.
2.
Aizawa
,
H.
,
Obataya
,
E.
,
Ono
,
T.
, and
Norimoto
,
M.
(
1998
).
“Acoustic converting efficiency and anisotropic nature of wood,”
Wood Res.
85
,
81
83
.
3.
Aramaki
,
M.
,
Baillères
,
H.
,
Brancheriau
,
L.
,
Kronland-Martinet
,
R.
, and
Ystad
,
S.
(
2007
).
“Sound quality assessment of wood for xylophone bars,”
J. Acoust. Soc. Am.
121
,
2407
2421
.
4.
Barlow
,
C.
(
1997
).
“Material selection for musical instruments,”
Proc. Inst. Acoust.
19
,
69
78
.
5.
Brancheriau
,
L.
,
Baillères
,
H.
,
Détienne
,
P.
,
Gril
,
J.
, and
Kronland
,
R.
(
2006
).
“Key signal and wood anatomy parameters related to the acoustic quality of wood for xylophone-type percussion instruments,”
J. Wood Sci.
52
,
270
273
.
6.
Brémaud
,
I.
(
2006
).
“Diversité des bois utilisés ou utilisables en facture d’instruments de musique. (Diversity of woods used or usable in musical instruments making),”
Ph.D. thesis,
University of Montpellier II
, p.
302
.
7.
Brémaud
,
I.
,
Amusant
,
N.
,
Minato
,
K.
,
Gril
,
J.
, and
Thibaut
,
B.
(
2011a
).
“Effect of extractives on vibrational properties of African Padauk (Pterocarpus soyauxii Taub),”
Wood Sci. Technol.
45
,
461
472
.
8.
Brémaud
,
I.
,
Gril
,
J.
, and
Thibaut
,
B.
(
2011b
).
“Anisotropy of wood vibrational properties: Dependence on grain angle and review of literature data,”
Wood Sci. Technol.
45
,
735
754
.
9.
Brémaud
,
I.
,
Minato
,
K.
,
Langbour
,
P.
, and
Thibaut
,
B.
(
2010
).
“Physico-chemical indicators of the inter-specific variability in vibration damping of wood,”
Ann. For. Sci.
67
,
707
715
.
10.
Brémaud
,
I.
,
Minato
,
K.
, and
Thibaut
,
B.
(
2009
).
“Mechanical damping of wood as related to species classification: a preliminary survey,”
in
6th Plant Biomechanics Conference PBM09
, edited by
B.
Thibaut
, 16–21 November, 2009,
Cayenne, French Guyana
, pp.
536
542
.
11.
Brémaud
,
I.
,
Thibaut
,
B.
, and
Minato
,
K.
(
2007
).
“A database linking woody species, vibrational properties, and uses in musical instruments of the world,”
in
ISMA 2007
, edited by
J.
Agullo
and
A.
Barjau
, 9–12 September,
2007
,
Barcelona, Spain
, Paper No. 3-S2-4.
12.
Bucur
,
V.
(
2006
).
Acoustics of Wood
, 2nd ed. (
Springer-Verlag
,
Berlin
), p.
393
.
13.
Buksnowitz
,
C.
,
Teischinger
,
A.
,
Müller
,
U.
,
Pahler
,
A.
, and
Evans
,
R.
(
2007
).
“Resonance wood [Picea abies (L.) Karst.]—Evaluation and prediction of violin makers ‘quality-grading,’”
J. Acoust. Soc. Am.
121
,
2384
2395
.
14.
Carrington
,
J. F.
(
1976
).
“Wooden drums for inter village telephony in Central Africa,”
J. Inst. Wood Sci.
7
,
10
14
.
15.
Chaigne
,
A.
, and
Doutaut
,
V.
(
1997
).
“Numerical simulations of xylophones. I. Time-domain modeling of the vibrating bars,”
J. Acoust. Soc. Am.
101
,
539
557
.
16.
Dechamps
,
R.
(
1972
).
“Note préliminaire concernant l’identification anatomique des espèces de bois utilisées dans la fabrication des tambours à fente de l’Afrique Centrale” (“Preliminary note concerning the anatomical identification of wood species used in the making of slit-drums from Central Africa”)
,
Africa Tervuren XVIII
,
15
18
.
17.
Dechamps
,
R.
(
1973
).
“Note préliminaire concernant l’identification anatomique des espèces de bois utilisées dans la fabrication des xylophones de l’Afrique Centrale” (“Preliminary note concerning the anatomical identification of wood species used in the making of xylophones from Central Africa”)
,
Africa-Tervuren XIX
, pp.
61
66
.
18.
Détienne
,
P.
, and
Chanson
,
B.
(
1996
).
“L’éventail de la densité du bois des feuillus. Comparaison entre différentes régions du Monde” (“The span in wood specific gravity of hardwoods. Comparison between different regions of the World”)
,
Bois For. Trop.
250
,
19
30
.
19.
Douau
,
D.
(
1986
).
“Evaluation des propriétés acoustiques, mécaniques et structurelles des bois de tables d’harmonie de guitare; leur influence sur le timbre de l’intrument” (“Evaluation of the acoustical, mechanical and structural properties of woods for guitar soundboards; their influence on the timbre of the instrument”)
, Ph.D. thesis,
Université du Maine
, France, p.
137
.
20.
Earle
,
C. J.
(
2010
).
“The Gymnosperm Database
,” http://www.conifers.org/ (Last accessed on November 2010).
21.
Fletcher
,
N. H.
, and
Rossing
,
T. D.
(
1998
).
The Physics of Musical Instruments
(
Springer Verlag
,
New-York
), p.
756
.
22.
Fukada
,
E.
(
1950
).
“The vibrational properties of wood I.,”
J. Phys. Soc. Jpn.
5
,
321
327
.
23.
Haines
,
D. W.
(
2000
).
“The essential mechanical properties of wood prepared for musical instruments,”
Catgut Acoust. Soc. J.
4
,
20
32
.
24.
Hase
,
N.
(
1987
).
“A comparison between acoustic physical factors of Honduras rosewood for marimbas and xylophones and a sensory evaluation of these instruments (in Japanese),”
Mokuzai Gakkaishi
33
,
762
768
.
25.
Holz
,
D.
(
1996a
).
“Acoustically important properties of xylophone-bar materials: can tropical woods be replaced by European species?”
Acust. Acta Acust.
82
,
878
884
.
26.
Holz
,
D.
(
1996b
).
“Comments on”
Chemical treatment of wood for musical instruments“[J. Acoust. Soc. Am.
96
,
3380
3391
],”
Holz
,
D.
J. Acoust. Soc. Am.
99
,
1795
1796
(
1994
).
27.
Hori
,
R.
,
Müller
,
M.
,
Watanabe
,
U.
,
Lichtenegger
,
H. C.
,
Fratzl
,
P.
, and
Sugiyama
,
J.
(
2002
).
“The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties,”
J. Mater. Sci.
37
,
4279
4284
.
28.
Kaptain
,
L.
(
1991
).
“Maderas que cantan” (“Woods that sing”)
,
Gobierno del estado de Chiapas
,
Instituto chiapaneco de cultura
,
Tuxtla Gutierrez, Chiapas, Mexico
, p.
226
.
29.
Kubojima
,
Y.
,
Okano
,
T.
, and
Ohta
,
M.
(
1997
).
“Effect of annual ring widths on structural and vibrational properties of wood,”
Mokuzai Gakkaishi
43
,
634
641
.
30.
Matsunaga
,
M.
,
Minato
,
K.
, and
Nakatsubo
,
F.
(
1999
).
“Vibrational property changes of spruce wood by impregnation with water-soluble extractives of pernambuco (Guilandina echinata Spreng.),”
J. Wood Sci.
45
,
470
474
.
31.
Minato
,
K.
,
Ito
,
Y.
, and
Sugawara
,
H.
(
2005
).
“Rationality of Kiri Wood (Paulownia tomentosa) in Traditional Uses”
(in Japanese),
J. Soc. Mater. Sci. Jpn.
54
,
361
364
.
32.
Norimoto
,
M.
,
Ono
,
T.
, and
Watanabe
,
Y.
(
1984
).
“Selection of wood used for piano soundboards”
(in Japanese),
J. Soc. Rheol. Jpn.
12
,
115
119
.
33.
Obataya
,
E.
,
Norimoto
,
M.
, and
Gril
,
J.
(
1998
).
“The effects of adsorbed water on dynamic mechanical properties of wood,”
Polymer
39
,
3059
3064
.
34.
Obataya
,
E.
,
Ono
,
T.
, and
Norimoto
,
M.
(
2000
).
“Vibrational properties of wood along the grain,”
J. Mater. Sci.
35
,
2993
3001
.
35.
Ono
,
T.
, and
Kataoka
,
A.
(
1979
).
“The frequency dependence of the dynamic Young’s modulus and internal friction of wood used for the soundboard of musical Instruments II” (in Japanese)
,
Mokuzai Gakkaishi
25
,
535
542
.
36.
Ono
,
T.
, and
Norimoto
,
M.
(
1983
).
“Study on Young’s modulus and internal friction of wood in relation to the evaluation of wood for musical instruments,”
Jpn. J. Appl. Phys.
22
,
611
614
.
37.
Ono
,
T.
, and
Norimoto
,
M.
(
1984
).
“On physical criteria for the selection of wood for soundboards of musical instruments,”
Rheol. Acta
23
,
652
656
.
38.
Pourtahmasi
,
K.
, and
Se Golpayegani
,
A.
(
2008
).
“Introducing Mulberry’s wood (Morus alba L.) used in bowl shaped musical instruments of Iran,”
in
Le bois: instrument du patrimoine musical (Wood: Instrument of Musical Heritage)
, edited by
S.
Leconte
and
S.
Vaiedelich
, 29 May
2009
,
Cité de la Musique
,
Paris
, pp.
78
87
.
39.
Richter
,
H. G.
(
1988
).
Holz als Rohstoff für den Musik-Instrumentenbau (Wood as Raw Material for Musical Instruments Making)
(
Moeck Verlag
,
Celle, Germany
), p.
44
.
40.
Rujinirun
,
C.
,
Phinyocheep
,
P.
,
Prachyabrued
,
W.
, and
Laemsak
,
N.
(
2005
).
“Chemical Treatment of Wood for Musical Instruments. Part I: Acoustically Important Properties of Wood for the Ranad (Thai Traditional Xylophone),”
Wood Sci. Tech.
39
,
77
85
.
41.
Salazar Salvatierra
,
R.
(
1994
).
“Instrumentos Musicales del Folclor Costarricense” (“Musical Instruments of the Costa Rican Folklore”)
,
Editorial Tecnologica de Costa Rica
,
Cartago, Costa Rica
, p.
228
.
42.
Schelleng
,
J. C.
(
1963
).
“The Violin as a Circuit,”
J. Acoust. Soc. Am.
35
,
326
338
.
43.
Traoré
,
B.
,
Brancheriau
,
L.
,
Perré
,
P.
,
Stevanovic
,
T.
, and
Diouf
,
P.
(
2010
).
“Acoustic quality of vène wood (Pterocarpus erinaceus Poir.) for xylophone instrument manufacture in Mali,”
Ann. For. Sci.
67
,
815
822
.
44.
Wegst
,
U. G. K.
(
2006
).
“Wood for sound,”
Am. J. Bot.
93
,
1439
1448
.
45.
Yano
,
H.
(
1994
).
“The changes in the acoustic properties of Western Red Cedar due to methanol extraction,”
Holzforschung
48
,
491
495
.
46.
Yano
,
H.
,
Kajita
,
H.
, and
Minato
,
K.
(
1994
).
“Chemical treatment of wood for musical instruments,”
J. Acoust. Soc. Am.
96
,
3380
3391
.
47.
Yano
,
H.
,
Kyou
,
K.
,
Furuta
,
Y.
, and
Kajita
,
H.
(
1995
).
“Acoustic properties of Brazilian rosewood used for guitar back plate (in Japanese),”
Mokuzai Gakkaishi
41
,
17
24
.
48.
Yano
,
H.
,
Matsuoka
,
I.
, and
Mukudai
,
J.
(
1992
).
“Acoustic properties of wood for violins,”
Mokuzai Gakkaishi
38
,
122
127
(in Japanese).
49.
Yano
,
H.
,
Oonishi
,
K.
, and
Mukudai
,
J.
(
1990
).
“Acoustic Properties of Wood for the Top Plate of Guitar,”
J. Soc. Mater. Sci. Jpn.
39
,
1207
1212
(in Japanese).
50.
Yoshikawa
,
S.
(
2007
).
“Acoustical classification of woods for string instruments,”
J. Acoust. Soc. Am.
122
,
573
573
.
You do not currently have access to this content.