When one swings a short corrugated pipe segment around one’s head, it produces a musically interesting whistling sound. As a musical toy it is called a “Hummer” and as a musical instrument, the “Voice of the Dragon.” The fluid dynamics aspects of the instrument are addressed, corresponding to the sound generation mechanism. Velocity profile measurements reveal that the turbulent velocity profile developed in a corrugated pipe differs notably from the one of a smooth pipe. This velocity profile appears to have a crucial effect both on the non-dimensional whistling frequency (Strouhal number) and on the amplitude of the pressure fluctuations. Using a numerical model based on incompressible flow simulations and vortex sound theory, excellent predictions of the whistling Strouhal numbers are achieved. The model does not provide an accurate prediction of the amplitude. In the second part of the paper the sound radiation from a Hummer is discussed. The acoustic measurements obtained in a semi-anechoic chamber are compared with a theoretical radiation model. Globally the instrument behaves as a rotating (Leslie) horn. The effects of Doppler shift, wall reflections, bending of the tube, non-constant rotational speed on the observed frequency, and amplitude are discussed.

1.
S. P.
Belfroid
,
D. P.
Shatto
, and
R. M.
Peters
, “
Flow induced pulsation caused by corrugated tubes
,” Report No. PVP2007-26503 (ASME-PVP, San Antonio, Texas,
2007
).
2.
S.
Ziada
and
E. T.
Bühlmann
, “
Flow-induced vibration in long corrugated pipes, C416/010
,”
Proceedings of the International Conference on Flow-Induced Vibration
,
Inst. of Mech. Eng.
,
England
,
1991
, pp.
417
426
.
3.
F. S.
Crawford
, “
Singing corrugated pipes
,”
Am. J. Phys.
62
,
278
288
(
1974
).
4.
M.
Silverman
and
G.
Cushman
, “
Voice of the dragon: The rotating corrugated resonator
,”
Eur. J. Phys.
10
,
298
304
(
1989
).
5.
S.
Serafin
and
J.
Kojs
, “
Computer models and compositional applications of plastic corrugated tubes
,”
Organ. Sound
10
(
1
),
67
73
(
2005
).
6.
P.
Schickele
,
The Definitive Biography of P.D.Q. Bach
(
Random House
,
New York
,
1976
), pp.
172
195
.
7.
G.
Nakiboğlu
,
S.
Belfroid
,
J.
Golliard
, and
A.
Hirschberg
, “
On the whistling corrugated pipes: Effect of pipe length and flow profile
,”
J. Fluid Mech.
672
,
78
108
(
2011
).
8.
G.
Nakiboglu
,
S. P. C.
Belfroid
,
J. F. H.
Willems
, and
A.
Hirschberg
, “
Whistling behavior of periodic systems: Corrugated pipes and multiple side branch system
,”
Int. J. Mech. Sci.
52
,
1458
1470
(
2010
).
9.
V.
Debut
,
J.
Antunes
, and
M.
Moreira
, “
Flow-acoustic interaction in corrugated pipes: Time domain simulation of experimental phenomena
,” in
Flow Induced Vibration
, edited by
I.
Zolotarev
and
J.
Horácek
,
9th International Conference on Flow-Induced Vibration
, Institute of Thermomechanics,
Prague, Czech Republic
,
2008
, p.
6
.
10.
H.
Goyder
, “
On the modelling of noise generation in corrugated pipes
,”
J. Press. Vessel Technol.
132
(
4
),
041304
(
2010
).
11.
M.
Popescu
and
S. T.
Johansen
, “
Modelling of aero-acoustic wave propagation in low mach number corrugated pipe flow
,”
Prog. Comput. Fluid Dyn.
9
,
417
425
(
2009
).
12.
D.
Tonon
,
B. J. T.
Landry
,
S. P. C.
Belfroid
,
J. F. H.
Willems
,
G. C. J.
Hofmans
, and
A.
Hirschberg
, “
Whistling of a pipe system with multiple side branches: comparison with corrugated pipes
,”
J. Sound Vib.
329
,
1007
1024
(
2010
).
13.
J.
Golliard
,
D.
Tonon
, and
S. P. C.
Belfroid
, “
Experimental investigation of the source locations for whistling short corrugated pipes, FEDSM-ICNMM2010-30732
,”
Proceedings of ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels and Minichannels
,
Montreal, Canada
,
2010
.
14.
H.
Schlichting
,
Boundary Layer Theory
, 7th ed. (
McGraw Hill
,
New York
,
1979
), pp.
127
130
.
15.
N.
Curle
, “
The influence of solid boundaries upon aerodynamic sound
,”
Proc. R. Soc. London, Ser. A
231
,
505
514
(
1955
).
16.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
(
Springer-Verlag
,
New York
,
1991
), pp.
436
447
.
17.
A. H.
Shapiro
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
(
Ronald
,
New York
,
1953
), pp.
92
93
.
18.
J. W.
Elliott
, “
Corrugated pipe flow
,” in
Lecture Notes on the Mathematics of Acoustics
, edited by
M. C. M.
Wrigth
(
Imperial College Press
,
London
,
2005
), pp.
207
222
.
19.
S. V.
Patankar
and
D. B.
Spalding
, “
A calculation procedure for heat mass and momentum transfer in three dimensional parabolic flows
,”
Int J. Heat Mass Transfer
15
,
1787
1806
(
1972
).
20.
R. D.
Blevins
,
Applied Fluid Dynamics Handbook
(
Krieger
,
Malabar, FL
,
1984
), pp.
55
56
.
21.
C. J.
Nederveen
,
Acoustical Aspects of Woodwind Instruments
(
Northern Illinois University Press
,
DeKalb, IL
,
1998
).
22.
J. C.
Bruggeman
, “
The propagation of low-frequency sound in a two-dimensional duct system with t-joints and right angle bends: Theory and experiment
,”
J. Acoust. Soc. Am.
82
,
1045
1051
(
1987
).
23.
V.
Sarohia
, “
Experimental investigation of oscillations in flow over shallow cavities
,”
AIAA J.
15
(
7
),
984
991
(
1977
).
24.
S.
Ziada
,
H.
Ng
, and
C. E.
Blake
, “
Flow excited resonance of a confined shallow cavity in low mach number flow and its control
,”
J. Fluids Struct.
18
,
79
92
(
2003
).
25.
J. C.
Bruggeman
,
A.
Hirschberg
,
M. E. H.
vanDongen
,
A. P. J.
Wijnands
, and
J.
Gorter
, “
Self-sustained aero-acoustic pulsations in gas transport systems: experimental study of the influence of closed side branches
,”
J. Sound Vib.
150
,
371
393
(
1991
).
26.
Y.
Nakamura
and
N.
Fukamachi
, “
Sound generation in corrugated tubes
,”
Fluid Dyn. Res.
7
,
255
261
(
1991
).
27.
U. R.
Kristiansen
and
G. A.
Wiik
, “
Experiments on sound generation in corrugated pipes with flow
,”
J. Acoust. Soc. Am.
121
,
1337
1344
(
2007
).
28.
L. H.
Cadwell
, “
Singing corrugated pipes revisited
,”
Am. J. Phys.
62
,
224
227
(
1994
).
29.
M. T.
Angus
and
M. T.
Lyon
, Quiet gas connector, United States Patent Application Publication No. US20080012331A1,
2008
.
30.
S.
Ziada
and
S.
Shine
, “
Strouhal numbers of flow-excited acoustic resonance of closed side branches
,”
J. Fluids Struct.
13
,
127
142
(
1999
).
31.
P.
Martínez-Lera
,
C.
Schram
,
S.
Föller
,
R.
Kaess
, and
W.
Polifke
, “
Identification of the aeroacoustic response of a low mach number flow through a t-joint
,”
J. Acoust. Soc. Am.
126
(
2
),
582
586
(
2009
).
32.
A. M.
Binnie
, “
Self-induced waves in a conduit with corrugated walls. II. Experiments with air in corrugated and finned tubes
,”
Proc. R. Soc. London, Ser. A
262
,
179
191
(
1961
).
33.
U.
Ingard
and
V. K.
Singhal
, “
Effect of flow on the acoustic resonances of an open-ended duct
,”
J. Acoust. Soc. Am.
58
(
4
),
788
793
(
1975
).
34.
A. D.
Pierce
,
Acoustics: An Introduction to Its Physical Principles and Applications
(
Acoustical Society of America
,
New York
,
1989
), pp.
210
211
.
35.
A. P.
Dowling
and
J. F.
Williams
,
Sound and Sources of Sound
(
Ellis Horwood, Ltd.
,
West Sussex, England
,
1983
), pp.
187
190
.
36.
S. W.
Rienstra
and
A.
Hirschberg
,
Lecture Notes: An Introduction to Acoustics
(
Eindhoven University of Technology
,
Eindhoven, Netherlands
,
2004
), pp.
278
292
.
37.
J.
Smith
,
S.
Serafin
,
J.
Abel
, and
D.
Berners
, “
Doppler simulation and the Leslie
,”
Proceedings of the 5th International Conference on Digital Audio Effects (DAFx-02)
,
Hamburg, Germany
,
2002
.
38.
R.
Kronland-Martinet
and
T.
Voinier
, “
Real-time perceptual simulation of moving sources: Application to the leslie cabinet and 3d sound immersion
,”
EURASIP J. Audio Speech Music Process
.
2008
,
849696
(
2008
).
39.
P.
Cermak
, “
Über die Tonbildung bei Metallschläuchen mit Eingedräcktem Spiralgang (On the sound generation in flexible metal hoses with spiraling grooves
),”
Phys. Z.
23
,
394
397
(
1922
).
You do not currently have access to this content.