Following recent advancements in the study of time-averaged properties of energy propagation in linear acoustic fields, the well established concept of power factor known from the electric AC circuits analysis, is here extended to acoustics. This allows our outline of a complete acousto-electro-mechanic analogy, where the fundamental physical concept of energy trajectory is assimilated to a continuous line network of electric circuits, and the complex intensity vector field is defined by means of three special spatial directions: the tangent, the principal normal and the binormal direction at each point of any energy path. The notions of sound energy conductance and susceptance are then introduced and their relationship with complex intensity is highlighted. Finally, the frequency distributions of the defined quantities are measured in different acoustical contexts, thus illustrating their practical utility for advanced intensimetric metrology.

1.
F. J.
Fahy
, “
Power flux streamlines
,” in
Sound Intensity
, 2nd ed. (
E & FN Spon
,
London
,
1995
), pp.
84
88
.
2.
D.
Stanzial
and
G.
Schiffrer
, “
On the connection between energy velocity, reverberation time and angular momentum
,”
J. Sound Vib.
329
,
931
943
(
2010
).
3.
P. J.
Westervelt
, “
Acoustical impedance in terms of energy functions
,”
J. Acoust. Soc. Am.
23
(
3
),
347
348
(
1951
).
4.
T. K.
Stanton
and
R. T.
Beyer
, “
Complex wattmeter measurements in a reactive acoustic field
,”
J. Acoust. Soc. Am.
65
(
1
),
249
252
(
1979
).
5.
D.
Stanzial
, “
From Guidonian hand to sound energy compass
,” in
Proc. Forum Acusticum 2005
,
Budapest
,
Hungary
, 29 August–2 September
2005
, (
EAA OPAKFI
,
Hungary
,
2005
), pp.
331
334
.
6.
R. C.
Heyser
, “
Instantaneous intensity
,” AES 81st Convention,
Audio Engineering Society
,
Los Angeles, CA
(
1986
).
7.
J. A.
Mann
, III
,
J.
Tichy
, and
A. J.
Romano
, “
Instantaneous and time-averaged energy transfer in acoustic fields
,”
J. Acoust. Soc. Am.
82
,
17
30
(
1987
).
8.
F.
Jacobsen
, “
A note on instantaneous and time-averaged active and reactive sound intensity
,”
J. Sound Vib.
147
(
3
),
489
496
(
1991
).
9.
G.
Schiffrer
and
D.
Stanzial
, “
Energetic properties of acoustic fields
,”
J. Acoust. Soc. Am.
96
(
6
),
3645
3653
(
1994
).
10.
D.
Stanzial
,
N.
Prodi
, and
G.
Schiffrer
, “
Reactive acoustic intensity for general fields and energy polarization
,”
J. Acoust. Soc. Am.
99
(
4
),
1868
1876
(
1996
).
11.
D. H.
Towne
,
Wave Phenomena
(
Dover Publications
,
New York
,
1988
), Chap. 4, pp.
70
73
.
12.
M. A.
Biot
, “
General theorems on the equivalence of group velocity and energy transport
,”
Phys. Rev.
105
(
4
),
1129
1137
(
1957
).
13.
H. F.
Davis
and
A. D.
Snider
, “
Acceleration and curvature
,”
in Introduction to Vector Analysis
, 5th ed. (
Wm. C. Brown Publishers
,
Dubuque, IA
,
1988
), pp.
79
86
.
14.
G.
Schiffrer
and
D.
Stanzial
, “
Energetic properties of acoustic fields
,”
J. Acoust. Soc. Am.
96
(
6
),
3645
3653
(
1994
), Sec. VI,
15.
G.
Schiffrer
and
D.
Stanzial
, “
Energetic properties of acoustic fields
,”
J. Acoust. Soc. Am.
96
(
6
),
3645
3653
(
1994
), Sec. IX,
16.
F. J.
Fahy
, “
Frequency distribution of sound intensity in time-stationary sound fields
,” in
Sound Intensity
, 2nd ed. (
E & FN Spon
,
London
,
1995
), pp.
93
96
.
17.
G. L.
D’Spain
,
W. S.
Hodgkiss
, and
G. L.
Edmons
, “
Energetics of the deep ocean’s infrasonic sound field
,”
J. Acoust. Soc. Am.
83
(
3
),
1134
1158
(
1991
).
18.
D.
Stanzial
,
G.
Sacchi
, and
G.
Schiffrer
, “
Calibration of pressure-velocity probes using a progressive plane wave reference field and comparison with nominal calibration filters
,”
J. Acoust. Soc. Am.
129
(
6
),
3745
3755
(
2011
).
19.
Y.-W.
Liu
,
C. A.
Sanford
,
J. C.
Ellison
,
D. F.
Fitzpatrick
,
M. P.
Gorga
, and
D. H.
Keefe
, “
Wideband absorbance tympanometry using pressure sweeps: System development and results on adults with normal hearing
,”
J. Acoust. Soc. Am.
124
(
6
),
3708
3719
(
2008
).
20.
Differently from Ref. 5 and Ref. 10, the term “reactive” is here used in strict connection with the elecroacoustic analogy coming from the physical meaning of the power factor.
You do not currently have access to this content.