Coronary artery disease (CAD) is the leading cause of death in the United States, being responsible for more than 20% of all deaths in the country. This is in large part due to the difficulty of diagnostic screening for CAD. Phonoangiography seeks to detect CAD via the acoustic signature associated with turbulent flow near an abnormally constricted, or stenosed, region. However, the usefulness of the technique is severely hindered by the low strength of the CAD signal compared to the background noise within the chest. In this work, acoustic finite element analysis (FEA) was performed on physiologically accurate chest geometries to demonstrate the feasibility of an original acoustic source separation methodology for isolating coronary sounds. This approach is based upon pseudoinversion of mixing matrices determined through a combination of experiment and computation. This allows calculation of the sound emitted by the coronary arteries based upon measurements of the acoustic velocity on the chest surface. This work demonstrates the feasibility of such a technique computationally and examines the vulnerability of the proposed approach to measurement errors.

1.
D.
Lloyd-Jones
,
R.
Adams
,
M.
Carnethon
,
G.
De Simone
,
T. B.
Ferguson
,
K.
Flegal
,
E.
Ford
,
K.
Furie
,
A.
Go
,
K.
Greenlund
,
N.
Haase
,
S.
Hailpern
,
M.
Ho
,
V.
Howard
,
B.
Kissela
,
S.
Kittner
,
D.
Lackland
,
L.
Lisabeth
,
A.
Marelli
,
M.
McDermott
,
J.
Meigs
,
D.
Mozaffarian
,
G.
Nichol
,
C.
O’Donnell
,
V.
Roger
,
W.
Rosamond
,
R.
Sacco
,
P.
Sorlie
,
R.
Stafford
,
J.
Steinberger
,
T.
Thom
,
S.
Wasserthiel-Smoller
,
N.
Wong
,
J.
Wylie-Rosett
, and
Y.
Hong
, “
Heart disease and stroke statistics–2009 Update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,”
Circulation
119
,
e21
e181
(
2009
).
2.
J.
Semmlow
and
K.
Rahalkar
, “
Acoustic detection of coronary artery disease
,”
Annu. Rev. Biomed. Eng.
9
,
449
469
(
2007
).
3.
J. L.
Semmlow
,
M.
Akay
, and
W.
Welkowitz
, “
Noninvasive detection of coronary artery disease using parametric spectral analysis methods
IEEE Eng. Med. Biol. Mag.
9
,
33
36
(
1990
).
4.
V.
Padmanhban
and
J.
Semmlow
, “
Dynamical analysis of diastolic heart sounds associated with coronary artery disease
,”
Ann. Biomed. Eng.
22
,
264
271
(
1994
).
5.
M.
Akay
,
W.
Welkowitz
,
J. L.
Semmlow
, and
J. B.
Kostis
, “
Application of the arma method to acoustic detection of coronary artery disease
,”
Med. Biol. Eng. Comput.
29
,
365
372
(
1991
).
6.
M.
Akay
,
Y.
Akay
,
W.
Welkowitz
,
J.
Semmlow
, and
J.
Kostis
, “
Application of Adaptive ftf/faest zero tracking filters to noninvasive characterization of the sound pattern caused by coronary artery stenosis before and after angioplasty
,”
Ann. Biomed. Eng.
21
,
9
17
(
1993
).
7.
N. L.
Owsley
, “
Array phonocardiography
,” in
IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium (2000)
, AS-SPCC, p.
31
.
8.
J. L.
Semmlow
,
W.
Welkowitz
,
J. B.
Kostis
, and,
M.
J.
, “
Coronary artery disease—correlates between diastolic auditory characteristics and coronary artery stenosis
,”
IEEE Trans. Biomed. Eng.
30
,
136
139
(
1998
).
9.
J. Z.
Wang
,
B.
Tie
,
W.
Welkowitz
,
J. L.
Semmlow
, and
J. B.
Kostis
, “
Modeling sound generation in stenosed coronary arteries
,”
IEEE Trans. Biomed. Eng.
37
,
1087
1094
(
1990
).
10.
A.
Goral-Wojcicka
,
W.
Borgiel
,
Z.
Malota
, and
Z.
Nawrat
, “
On the acoustic phenomena produced by turbulence in the flowing blood
,”
Polish J. Med. Phys. Eng.
8
,
29
35
(
2002
).
11.
R. S.
Lees
and
C. F.
Dewey
, “
Phonoangiography: A new noninvasive diagnostic method for studying arterial disease
,”
Proc. Natl. Acad. Sci. USA
67
,
935
942
(
1970
).
12.
S.
Mohler
, “
Cardiac Sonospectrographic analyzer
,” U.S. patent 6054873 (April 25,
2000
).
13.
Y.
Yazicioglu
,
T. J.
Royston
,
T.
Spohnholtz
,
B.
Martin
,
F.
Loth
, and
H. S.
Bassiouny
, “
Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction
,”
J. Acoust. Soc. Am.
118
,
1193
1209
(
2005
).
14.
D.
Gauthier
,
Y. M.
Akay
,
R. G.
Paden
,
W.
Pavlicek
,
F. D.
Fortuin
,
J. K.
Sweeney
,
R. W.
Lee
, and
M.
Akay
, “
Spectral analysis of heart sounds associated with coronary occlusions
,” in
6th International Special Topic Conference on Information Technology Applications in Biomedicine
, 200,
ITAB
(
2007
), p.
49
52
.
15.
N. L.
Owsley
and
A. J.
Hull
, “
Beamformed nearfield imaging of a simulated coronary artery containing a stenosis
,”
IEEE Trans. Biomed. Eng.
17
,
900
909
(
1998
).
16.
H.
Pasterkamp
,
R.
Consunji-Araneta
,
Y.
Oh
, and
J.
Holbrow
, “
Chest surface mapping of lung sounds during methacholine challenge
Pediatr. Pulmonol.
23
,
21
30
(
1997
).
17.
A.
Belouchrani
,
K.
Abed-Meraim
,
J. F.
Cardoso
, and
E.
Moulines
, “
A blind source separation technique using second-order statistics
,”
IEEE Trans. Signal Process.
45
,
434
444
(
1997
).
18.
J. F.
Cardoso
and
B. H.
Laheld
, “
Equivariant adaptive source separation
,”
IEEE Trans. Signal Process.
44
,
3017
3030
(
1996
).
19.
C.
Xi-Ren
and
L.
Ruey-Wen
, “
General approach to blind source separation
,”
IEEE Trans. Signal Process.
44
,
562
571
(
1996
).
20.
R.
Lambert
and
A.
Bell
, “
Blind separation of multiple speakers in a multipath environment
,”
Proceedings of the ICASSP
, (
1997
) pp.
423
426
.
21.
A.
Cichocki
,
R.
Unbehauen
, and
E.
Rummert
, “
Robust learning algorithm for blind separation of signals
,”
Electron. Lett.
30
,
1386
1387
(
1994
).
22.
A.
Bell
and
T.
Sejnowski
, “
An information maximization approach to blind separation and blind deconvolution
,”
Neural Comput.
7
,
1129
1159
(
1995
).
23.
T.-P.
Jung
,
S.
Makeig
,
C.
Humphries
,
T.-W.
Lee
,
M. J.
McKeown
,
V.
Iragui
, and
T. J.
Sejnowski
, “
Removing electroencephalographic artifacts by blind source separation
Psychophysiology
37
,
163
178
(
2000
).
24.
V.
Zarzosa
,
A. K.
Nandi
, and
E.
Bacharakis
, “
Maternal and foetal ecg separation using blind source separation methods
,”
Math. Med. Biol.
14
,
207
225
(
1997
).
25.
E.
Dekker
, “
Transition between laminar and turbulent flow in human trachea
J. Appl. Physiol.
16
,
1060
1064
(
1961
).
26.
W.
Kostucki
,
J.-L.
Vandenbossche
,
A.
Friart
, and
M.
Englert
, “
Pulsed Doppler regurgitant flow patterns of normal valves
,”
Am. J. Cardiol.
58
,
309
313
(
1986
).
27.
P.
Stein
and
H.
Sabbah
, “
Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves
,”
Circ. Res.
39
,
58
65
(
1976
).
28.
I.
Vovk
,
V.
Grinchenko
, and
V.
Oleinik
, “
Modeling the acoustic properties of the chest and measuring breath sounds
,”
Acoust. Phys.
41
,
667
676
(
1995
).
29.
T. J.
Royston
,
X.
Zhang
,
H. A.
Mansy
, and
R. H.
Sandler
, “
Modeling sound transmission through the pulmonary system and chest with application to diagnosis of a collapsed lung
,”
J. Acoust. Soc. Am.
111
,
1931
1946
(
2002
).
30.
M. B.
Ozer
,
S.
Acikgoz
,
T. J.
Royston
,
H. A.
Mansy
, and
R. H.
Sandler
, “
Boundary element model for simulating sound propagation and source localization within the lungs
,”
J. Acoust. Soc. Am.
122
,
657
671
(
2007
).
31.
S.
Acikgoz
,
M. B.
Ozer
,
T. J.
Royston
,
H. A.
Mansy
, and
R. H.
Sandler
, “
Experimental and computational models for simulating sound propagation within the lungs
,”
J. Vib. Acoust.
130
,
021010
(
2008
).
32.
ANSYS (SAS IP, Inc., 2009).
33.
S. S.
Varghese
,
S. H.
Frankel
, and
P. F.
Fischer
, “
Direct numerical simulation of stenotic flows. II. Pulsatile flow
,”
J. Fluid Mech.
582
,
281
318
(
2007
).
34.
S. S.
Varghese
,
S. H.
Frankel
, and
P. F.
Fischer
, “
Direct numerical simulation of stenotic flows. I. Steady flow
,”
J. Fluid Mech.
582
,
253
280
(
2007
).
35.
S. S.
Varghese
and
S. H.
Frankel
, “
Numerical modeling of pulsatile turbulent flow in stenotic vessels
,”
J. Biomech. Eng.
125
,
445
460
(
2003
).
36.
S. J.
Sherwin
and
H. M.
Blackburn
, “
Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows
,”
J. Fluid Mech.
533
,
297
327
(
2005
).
37.
H. M.
Blackburn
,
S. J.
Sherwin
, and
D.
Barkley
, “
Convective instability and transient growth in steady and pulsatile stenotic flows
,”
J. Fluid Mech.
607
,
267
277
(
2008
).
38.
H. M.
Blackburn
and
S. J.
Sherwin
, “
Instability modes and transition of pulsatile stenotic flow: pulse-period dependence
,”
J. Fluid Mech.
573
,
57
88
(
2007
).
39.
J.
Vetel
,
A.
Garon
,
D.
Pelletier
, and
M. I.
Farinas
, “
Asymmetry and transition to turbulence in a smooth axisymmetric constriction
,”
J. Fluid Mech.
607
,
351
386
(
2008
).
40.
G. R.
Zendehbudi
and
M. S.
Moayeri
, “
Comparison of physiological and simple pulsatile flows through stenosed arteries
,”
J. Biomech.
32
,
959
965
(
1999
).
You do not currently have access to this content.