The vocalization behavior of Mongolian gerbils, a model animal of auditory physiology, was examined. A pair of gerbils was placed in a chamber, and their species-specific vocalizations and locomotive behaviors were recorded and analyzed. Two types of calls were predominantly produced: high-frequency upward frequency-modulated (HU-FM) calls and low-frequency multi-harmonic frequency-modulated (LM-FM) calls. Emission rates of HU-FM calls significantly decreased as the distance between the two gerbils increased, and playback of simulated HU-FM calls increased the emission rates. Acoustic analysis of HU-FM calls showed that the calls exhibited a stereotypic spectro-temporal structure including a fixed inter-onset interval (100–175 ms) and that individual differences in the frequency could convey the body size of the callers. The timing of HU-FM calls was highly synchronized with jump movements when an animal vocalized while jumping, suggesting the existence of tight locomotor-vocal coupling. Conversely, LM-FM calls were observed only when the gerbils tactilely contacted with each other while fighting over a food. These results suggest that Mongolian gerbils change the rates of call emissions and call types (e.g., LM-FM or HU-FM calls) in response to changes in visual and possibly tactile and auditory information. The functions of both calls are discussed in terms of their acoustic structures.

1.
Blumberg
,
M. S.
,
Efimova
,
I. V.
, and
Alberts
,
J. R.
(
1992
).
“Ultrasonic vocalizations by rat pups: the primary importance of ambient temperature and the thermal significance of contact comfort,”
Dev. Psychobiol.
25
,
229
250
.
2.
Broom
,
D. M.
,
Elwood
,
R. W.
,
Lakin
,
J.
,
Willy
,
S. J.
, and
Pretlove
,
A. J.
(
2009
).
“Developmental changes in several parameters of ultrasonic calling by young Mongolian gerbils (Meriones unguiculatus),”
J. Zool.
183
,
281
290
.
3.
Brosch
,
M.
,
Budinger
,
E.
, and
Scheich
,
H.
(
2002
).
“Stimulus-related gamma oscillations in primate auditory cortex,”
J. Neurophysiol.
87
,
2715
2725
.
4.
De Ghett
,
V. J.
(
1974
).
“Developmental changes in the rate of ultrasonic vocalization in the mongolian gerbil,”
Dev. Psychobiol.
7
,
267
272
.
5.
Doupe
,
A. J.
, and
Konishi
,
M.
(
1991
).
“Song-selective auditory circuits in the vocal control system of the zebra finch,”
Proc. Natl. Acad. Sci. U.S.A.
88
,
11339
11343
.
6.
Elwood
,
R. W.
(
1979
).
“Ultrasounds and maternal behavior in the Mongolian gerbil,”
Dev. Psychobiol.
12
,
281
284
.
7.
Floody
,
O. R.
, and
Pfaff
,
D. W.
(
1977
).
“Communication among hamsters by high-frequency acoustic signals. I. Physical characteristics of hamster calls,”
J. Comp. Physiol. Psychol.
91
,
794
806
.
8.
Furukawa
,
S.
,
Maki
,
K.
,
Kashino
,
M.
, and
Riquimaroux
,
H.
(
2005
).
“Dependency of the interaural phase difference sensitivities of inferior collicular neurons on a preceding tone and its implications in neural population coding,”
J. Neurophysiol.
93
,
3313
3326
.
9.
Fuzessery
,
Z. M.
, and
Feng
,
A. S.
(
1983
).
“Mating call selectivity in the thalamus and midbrain of the leopard frog: Single and multiunit analyses,”
J. Comp. Physiol. A
150
,
333
344
.
10.
He
,
D. Z.
,
Jia
,
S.
, and
Dallos
,
P.
(
2004
).
“Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea,”
Nature
429
,
766
770
.
11.
Heth
,
G.
,
Frankenberg
,
E.
, and
Nevo
,
E.
(
1988
). “ 
“Courtship” call of subterranean mole rats (Spalax ehrenbergi): Physical analysis,”
J. Mammal
69
,
121
125
.
12.
Holman
,
S. D.
(
1980
).
“Sexually dimorphic, ultrasonic vocalizations of Mongolian gerbils,”
Behav. Neural Biol.
28
,
183
192
.
13.
Holman
,
S. D.
(
1981
).
“Neonatal androgenic influences on masculine ultrasonic vocalizations of Mongolian gerbils,”
Physiol. Behav.
26
,
583
586
.
14.
Holman
,
S. D.
, and
Hutchison
,
J. B.
(
1991
).
“Differential effects of neonatal castration on the development of sexually dimorphic brain areas in the gerbil,”
Brain Res. Dev. Brain Res
61
,
147
150
.
15.
Holman
,
S. D.
, and
Seale
,
W. T.
(
1991
).
“Ontogeny of sexually dimorphic ultrasonic vocalizations in Mongolian gerbils,”
Dev. Psychobiol.
24
,
103
115
.
16.
Holman
,
S. D.
,
Seale
,
W. T.
, and
Hutchison
,
J. B.
(
1995
).
“Ultrasonic vocalizations in immature gerbils: Emission rate and structural changes after neonatal exposure to androgen,”
Physiol. Behav.
57
,
451
460
.
17.
Kanwal
,
J. S.
,
Matsumura
,
S.
,
Ohlemiller
,
K.
, and
Suga
,
N.
(
1994
).
“Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats,”
J. Acoust. Soc. Am.
96
,
1229
1254
.
18.
Kleese
,
D.
, and
Hull
,
E.
(
1980
).
“Adult responsiveness to ultrasonic signals from gerbils of varying ages: parity, gender, and housing effects,”
Dev. Psychobiol.
13
,
233
241
.
19.
Kumar
,
S. S.
,
Wen
,
X.
,
Yang
,
Y.
, and
Buckmaster
,
P. S.
(
2006
).
“GABAA receptor-mediated IPSCs and alpha1 subunit expression are not reduced in the substantia nigra pars reticulata of gerbils with inherited epilepsy,”
J. Neurophysiol.
95
,
2446
2455
.
20.
Morton
,
E. S.
(
1977
).
“On the occurrence and significance of motivationstructural rules in some birds and mammal sounds,”
Am. Nat.
111
,
855
869
.
21.
Naumov
,
N. P.
, and
Lobachev
,
V. S.
(
1975
).
“Ecology of desert rodents of the USSR (jerboas and gerbils),”
in
Rodents in Desert Environments
, edited by
I.
Prakash
and
P. K.
Ghosh
(
Junk
,
The Hague
), pp.
465
598
.
22.
Nitatori
,
T.
,
Sato
,
N.
,
Waguri
,
S.
,
Karasawa
,
Y.
,
Araki
,
H.
,
Shibanai
,
K.
,
Kominami
,
E.
, and
Uchiyama
,
Y.
(
1995
).
“Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis,”
J. Neurosci.
15
,
1001
1011
.
23.
Randall
,
J. A.
,
McCowan
,
B.
,
Collins
,
K. C.
,
Hooper
,
S. L.
, and
Rogovin
,
K.
(
2005
).
“Alarm signals of the great gerbil: acoustic variation by predator context, sex, age, individual, and family group,”
J. Acoust. Soc. Am.
118
,
2706
2714
.
24.
Randall
,
J. A.
,
Rogovin
,
K. A.
, and
Shier
,
D. M.
(
2000
).
“Antipredator behavior of a social desert rodent: Footdrumming and alarm calling in the great gerbil, Rhombomys opiums,”
Behav. Ecol. Soc.
48
,
110
118
.
25.
Roper
,
T.
, and
Polioudakis
,
E.
(
1977
).
“The behaviour of Mongolian gerbils in a semi-natural environment, with special reference to ventral marking, dominance and sociability,”
Behaviour
61
,
207
237
.
26.
Sales
,
G. D.
(
1972
).
“Ultrasound and aggressive behaviour in rats and other small mammals,”
Anim. Behav.
20
,
88
100
.
27.
Schleich
,
C.
, and
Busch
,
C.
(
2002
).
“Acoustic signals of a solitary subterranean rodent Ctenomys talarum (Rodentia: Ctenomyidae): physical characteristics and behavioural correlates,”
J. Ethol.
20
,
123
131
.
28.
Thiessen
,
D. D.
,
Graham
,
M.
, and
Davenport
,
R.
(
1978
).
“Ultrasonic signaling in the gerbil (Meriones unguiculatus): Social interaction and olfaction,”
J. Comp. Physiol. Psychol.
92
,
1041
1049
.
29.
Thiessen
,
D. D.
, and
Kittrell
,
E. M.
(
1979
).
“Mechanical features of ultrasound emission in the mongolian gerbil, Meriones ungiculatus,”
Am. Zool.
19
,
509
512
.
30.
Thiessen
,
D. D.
,
Kittrell
,
E. M.
, and
Graham
,
J. M.
(
1980
).
“Biomechanics of ultrasound emissions in the Mongolian gerbil, Meriones unguiculatus,”
Behav. Neural Biol.
29
,
415
429
.
31.
Waring
,
A.
, and
Perper
,
T.
(
1979
).
“Parental behaviour in the Mongolian gerbil (Meriones unguiculatus). I. Retrieval,”
Anim. Behav.
27
,
1091
1097
.
32.
Yosida
,
S.
,
Kobayasi
,
K. I.
,
Ikebuchi
,
M.
,
Ozaki
,
R.
, and
Okanoya
,
K.
(
2007
).
“Antiphonal vocalization of a subterranean rodent, the naked mole rat (Heterocephalus glaber),”
J. Ethol.
113
,
703
710
.
You do not currently have access to this content.