A cascade of two-pole–two-zero filter stages is a good model of the auditory periphery in two distinct ways. First, in the form of the pole–zero filter cascade, it acts as an auditory filter model that provides an excellent fit to data on human detection of tones in masking noise, with fewer fitting parameters than previously reported filter models such as the roex and gammachirp models. Second, when extended to the form of the cascade of asymmetric resonators with fast-acting compression, it serves as an efficient front-end filterbank for machine-hearing applications, including dynamic nonlinear effects such as fast wide-dynamic-range compression. In their underlying linear approximations, these filters are described by their poles and zeros, that is, by rational transfer functions, which makes them simple to implement in analog or digital domains. Other advantages in these models derive from the close connection of the filter-cascade architecture to wave propagation in the cochlea. These models also reflect the automatic-gain-control function of the auditory system and can maintain approximately constant impulse-response zero-crossing times as the level-dependent parameters change.

1.
Bacon
,
S. P.
(
2004
). “
Overview of auditory compression
,” in
Compression: From Cochlea to Cochlear Implants
, edited by
S. P.
Bacon
,
R. R.
Ray
, and
A. N.
Popper
(
Springer-Verlag
,
New York
), pp.
1
17
.
2.
Baker
,
R. J.
,
Rosen
,
S.
, and
Darling
,
A. M.
(
1998
). “
An efficient characterisation of human auditory filtering across level and frequency that is also physiologically reasonable
,” in
Psychophysical and Physiological Advances in Hearing
, edited by
A. R.
Palmer
,
A.
Rees
,
A. Q.
Summerfield
, and
R.
Meddis
(
Whurr
,
London
), pp.
81
88
.
3.
Carney
,
L. H.
(
1993
). “
A model for the responses of low-frequency auditory-nerve fibers in cat
,”
J. Acoust. Soc. Am.
93
,
401
417
.
4.
Carney
,
L. H.
,
McDuffy
,
M. J.
, and
Shekhter
,
I.
(
1999
). “
Frequency glides in the impulse responses of auditory-nerve fibers
,”
J. Acoust. Soc. Am.
105
,
2384
2391
.
5.
de Boer
,
E.
(
1976
). “
Cross-correlation function of a bandpass nonlinear network
,”
Proc. IEEE
64
,
1443
1444
.
6.
de Boer
,
E.
, and
de Jongh
,
H. R.
(
1978
). “
On cochlear encoding: Potentialities and limitations of the reverse-correlation technique
,”
J. Acoust. Soc. Am.
63
,
115
135
.
7.
Duifhuis
,
H.
(
2004
). “
Comment on ‘An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity’ [J. Acoust. Soc. Am. 114, 2112–2117]
,”
J. Acoust. Soc. Am.
115
,
1889
1890
.
8.
Flanagan
,
J. L.
(
1960
). “
Models for approximating basilar membrane displacement
,”
Bell Sys. Tech. J.
39
,
1163
1191
.
9.
Flanagan
,
J. L.
(
1962
). “
Models for approximating basilar membrane displacement—Part II. Effects of middle-ear transmission and some relations between subjective and physiological behavior
,”
Bell Sys. Tech. J.
41
,
959
1009
.
10.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
1990
). “
Derivation of auditory filter shapes from notched noise data
,”
Hearing Res.
47
,
103
138
.
11.
Glasberg
,
B. R.
, and
Moore
,
B. C. J.
(
2000
). “
Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise
,”
J. Acoust. Soc. Am.
108
,
2318
2328
.
12.
Glasberg
,
B. R.
,
Moore
,
B. C. J.
,
Patterson
,
R. D.
, and
Nimmo-Smith
,
I.
(
1984
). “
Dynamic range and asymmetry of the auditory filter
,”
J. Acoust. Soc. Am.
76
,
419
427
.
13.
Irino
,
T.
, and
Patterson
,
R. D.
(
1997
). “
A time-domain, level-dependent auditory filter: The gammachirp
,”
J. Acoust. Soc. Am.
101
,
412
419
.
14.
Irino
,
T.
, and
Patterson
,
R. D.
(
2001
). “
A compressive gammachirp auditory filter for both physiological and psychophysical data
,”
J. Acoust. Soc. Am.
109
,
2008
2022
.
15.
Irino
,
T.
, and
Patterson
,
R. D.
(
2006
). “
A dynamic compressive gammachirp auditory filterbank
,”
IEEE Trans. Audio Speech Language Process.
14
,
2222
2232
.
16.
Johannesma
,
P. I. M.
(
1972
). “
The pre-response stimulus ensemble of neurons in the cochlear nucleus
,” in
Proc. IPO Symposium on Hearing Theory
, edited by
B. L.
Cardozo
(
IPO
,
Eindhoven
), pp.
58
69
.
17.
Katsiamis
,
A. G.
,
Drakakis
,
E. M.
, and
Lyon
,
R. F.
(
2007
). “
Practical gammatone-like filters for auditory processing
,”
EURASIP J. Audio Speech Music Process.
2007
,
63685
.
18.
Kim
,
D. O.
,
Molnar
,
C. E.
, and
Pfeiffer
,
R. R.
(
1973
). “
A system of nonlinear differential equations modeling basilar-membrane motion
,”
J. Acoust. Soc. Am.
54
,
1517
1529
.
19.
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
2001
). “
A human nonlinear cochlear filterbank
,”
J. Acoust. Soc. Am.
110
,
3107
3118
.
20.
Lutfi
,
R. A.
, and
Patterson
,
R. D.
(
1984
). “
On the growth of masking asymmetry with stimulus intensity
,”
J. Acoust. Soc. Am.
76
,
739
745
.
21.
Lyon
,
R. F.
(
1982
). “
A computational model of filtering, detection, and compression in the cochlea
,” in IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp.
1282
1285
.
22.
Lyon
,
R. F.
(
1990
). “
Automatic gain control in cochlear mechanics
,” in
The Mechanics and Biophysics of Hearing
, edited by
P.
Dallos
,
C. D.
Geisler
,
J. W.
Matthews
,
M.
Ruggero
, and
C. R.
Steele
(
Springer-Verlag
,
New York
), pp.
395
420
.
23.
Lyon
,
R. F.
(
1997
). “
All-pole models of auditory filtering
,” in
Diversity in Auditory Mechanics
, edited by
E. R.
Lewis
,
G. R.
Long
,
R. F.
Lyon
,
P. M.
Narins
,
C. R.
Steele
, and
E.
Hecht-Poinar
(
World Scientific Publishing
,
Singapore
), pp.
205
211
.
24.
Lyon
,
R. F.
(
1998
). “
Filter cascades as analogs of the cochlea
”, in
Neuromorphic Systems Engineering: Neural Networks in Silicon
, edited by
T. S.
Lande
(
Kluwer Academic Publishers
,
Norwell, MA
), pp.
3
18
.
25.
Lyon
,
R. F.
,
Katsiamis
,
A. G.
, and
Drakakis
,
E. M.
(
2010a
). “
History and future of auditory filter models
,” in IEEE International Conference on Circuits and Systems, pp.
3809
3812
.
26.
Lyon
,
R. F.
, and
Mead
,
C.
(
1988
). “
An analog electronic cochlea
,”
IEEE Trans. Acoust. Speech Signal Process.
36
,
1119
1134
.
27.
Lyon
,
R. F.
,
Rehn
,
M.
,
Bengio
,
S.
,
Walters
,
T. C.
, and
Chechik
,
G.
(
2010b
). “
Sound retrieval and ranking using sparse auditory representations
,”
Neural Comp.
22
,
2390
2416
.
28.
Moore
,
B. C. J.
(
1995
). “
Frequency analysis and masking
,” in
Hearing
, edited by
B. C. J.
Moore
(
Academic Press
,
San Diego
), pp.
161
205
.
29.
Moore
,
B. C. J.
, and
Glasberg
,
B. R.
(
1987
). “
Formulae describing frequency selectivity as a function of frequency and level, and their use in calculating excitation patterns
,”
Hearing Res.
28
,
209
225
.
30.
Moore
,
B. C. J.
,
Peters
,
R. W.
, and
Glasberg
,
B. R.
(
1990
). “
Auditory filter shapes at low center frequencies
,”
J. Acoust. Soc. Am.
88
,
132
140
.
31.
Patterson
,
R. D.
(
1976
). “
Auditory filter shapes derived with noise stimuli
,”
J. Acoust. Soc. Am.
59
,
640
654
.
32.
Patterson
,
R. D.
, and
Moore
,
B. C. J.
(
1986
). “
Auditory filters and excitation patterns as representations of frequency resolution
,” in
Frequency Selectivity in Hearing
, edited by
B. C. J.
Moore
(
Academic Press
,
London
), pp.
123
177
.
33.
Patterson
,
R. D.
, and
Nimmo-Smith
,
I.
(
1980
). “
Off-frequency listening and auditory-filter asymmetry
,”
J. Acoust. Soc. Am.
67
,
229
245
.
34.
Patterson
,
R. D.
,
Unoki
,
M.
, and
Irino
,
T.
(
2003
). “
Extending the domain of center frequencies for the compressive gammachirp auditory filter
,”
J. Acoust. Soc. Am.
114
,
1529
1542
.
35.
Peterson
,
L. C.
, and
Bogert
,
B. P.
(
1950
). “
A dynamical theory of the cochlea
,”
J. Acoust. Soc. Am.
22
,
369
381
.
36.
Ranke
,
O. F.
(
1950
). “
Theory of operation of the cochlea: A contribution to the hydrodynamics of the cochlea
,”
J. Acoust. Soc. Am.
22
,
772
777
.
37.
Robles
,
L.
, and
Ruggero
,
M. A.
(
2001
). “
Mechanics of the mammalian cochlea
,”
Physiol. Rev.
81
,
1305
1352
.
38.
Rosen
,
S.
, and
Baker
,
R. J.
(
1994
). “
Characterising auditory filter nonlinearity
,”
Hearing Res.
73
,
231
243
.
39.
Rosen
,
S.
,
Baker
,
R. J.
, and
Darling
,
A.
(
1998
). “
Auditory filter nonlinearity at 2 kHz in normal hearing listeners
,”
J. Acoust. Soc. Am.
103
,
2539
2550
.
40.
Shera
,
C. A.
(
2001
). “
Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics
,”
J. Acoust. Soc. Am.
110
,
332
348
.
41.
Slaney
,
M.
, and
Lyon
,
R. F.
(
1993
). “
On the importance of time—A temporal representation of sound
,” in
Visual Representations of Speech Signals
, edited by
M.
Cooke
,
S.
Beet
, and
M.
Crawford
(
John Wiley and Sons
,
Sussex
), pp.
95
116
.
42.
Tan
,
Q.
, and
Carney
,
L.
(
2003
). “
A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide
,”
J. Acoust. Soc. Am.
114
,
2007
2020
.
43.
Unoki
,
M.
,
Irino
,
T.
,
Glasberg
,
B.
,
Moore
,
B. C. J.
, and
Patterson
,
R. D.
(
2006
). “
Comparison of the roex and gammachirp filters as representations of the auditory filter
,”
J. Acoust. Soc. Am.
120
,
1474
1492
.
44.
Webster
,
J. C.
,
Miller
,
P. H.
,
Thompson
,
P. O.
, and
Davenport
,
E. W.
(
1952
). “
The masking and pitch shift of pure tones near abrupt changes in a thermal noise spectrum
,”
J. Acoust. Soc. Am.
24
,
147
152
.
45.
Wegel
,
R. L.
, and
Lane
,
C. E.
(
1924
). “
The auditory masking of one sound by another and its probable relation to the dynamics of the inner ear
,”
Phys. Rev.
23
,
266
285
.
46.
Yang
,
W. Y.
(
2009
). “
Continuous-time systems and discrete-time systems
,” in
Signals and Systems with MATLAB
(
Springer-Verlag
,
Berlin)
, pp.
292
293
.
47.
Zhang
,
X.
,
Heinz
,
M. G.
,
Bruce
,
I. C.
, and
Carney
,
L. H.
(
2001
). “
A phenomenological model for the responses of auditory-nerve fibers: I. nonlinear tuning with compression and suppression
,”
J. Acoust. Soc. Am.
109
,
648
670
.
48.
Zweig
,
G.
,
Lipes
,
R.
, and
Pierce
,
J. R.
(
1976
). “
The cochlear compromise
,”
J. Acoust. Soc. Am.
59
,
975
982
.
You do not currently have access to this content.