A detailed understanding of the response of single microbubbles subjected to ultrasound is fundamental to a full understanding of the contrast-enhancing abilities of microbubbles in medical ultrasound imaging, in targeted molecular imaging with ultrasound, and in ultrasound-mediated drug delivery with microbubbles. Here, single microbubbles are isolated and their ultrasound-induced radial dynamics recorded with an ultra-high-speed camera at up to 25 million frames per second. The sound emission is recorded simultaneously with a calibrated single element transducer. It is shown that the sound emission can be predicted directly from the optically recorded radial dynamics, and vice versa, that the nanometer-scale radial dynamics can be predicted from the acoustic response recorded in the far field.

1.
J.
Lindner
, “
Microbubbles in medical imaging: Current applications and future directions
,”
Nat. Rev. Drug Discovery
3
,
527
533
(
2004
).
2.
S.
Hilgenfeldt
,
D.
Lohse
, and
M.
Zomack
,
“Response of bubbles to diagnostic ultrasound: A unifying theoretical approach,”
Eur. Phys. J.
4
,
247
255
(
1998
).
3.
V.
Mor-Avi
,
E.
Caiani
,
K.
Collins
,
C.
Korcarz
,
J.
Bednarz
, and
R.
Lang
,
“Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images,”
Circulation
104
,
352
357
(
2001
).
4.
D. H.
Simpson
,
C.
Chin
, and
P.
Burns
,
“Pulse inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
372
382
(
1999
).
5.
J. E.
Chomas
,
P. A.
Dayton
,
D. J.
May
, and
K. W.
Ferrara
,
“Nondestructive subharmonic imaging,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
883
892
(
2002
).
6.
G.
Bhagavatheeshwaran
,
W. T.
Shi
,
F.
Forsberg
, and
P. M.
Shankar
,
“Subharmonic signal generation from contrast agents in simulated neovessels,”
Ultrasound Med. Biol.
30
,
199
203
(
2004
).
7.
D.
Goertz
,
M.
Frijlink
,
D.
Tempel
,
V.
Bhagwandas
,
A.
Gisolf
,
R.
Krams
,
N.
de Jong
, and
A.
van der Steen
,
“Subharmonic contrast intravascular ultrasound for vasa vasorum imaging,”
Ultrasound Med. Biol.
33
,
1859
1872
(
2007
).
8.
P. J. A.
Frinking
,
E.
Gaud
,
J.
Brochot
, and
M.
Arditi
,
“Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
1762
1771
(
2010
).
9.
J.
Sijl
,
B.
Dollet
,
M.
Overvelde
,
V.
Garbin
,
T.
Rozendal
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
,
“Subharmonic behavior of phospholipid-coated microbubbles,”
J. Acoust. Soc. Am.
128
,
3239
3252
(
2010
).
10.
S. B.
Feinstein
, “
The powerful microbubble: From bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond
,”
Am. J. Physiol. Heart Circ. Physiol.
287
,
H450
457
(
2004
).
11.
A.
van Wamel
,
K.
Kooiman
,
M.
Harteveld
,
M.
Emmer
,
F. J.
ten Cate
,
M.
Versluis
, and
N.
de Jong
,
“Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation,”
J. Controlled Release
112
,
149
155
(
2006
).
12.
C. D.
Ohl
,
M.
Arora
,
R.
Ikink
,
N.
de Jong
,
M.
Versluis
,
M.
Delius
, and
D.
Lohse
,
“Sonoporation from jetting cavitation bubbles,”
Biophys. J.
91
,
4285
4295
(
2006
).
13.
J. W.
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag.
34
,
94
98
(
1917
).
14.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
,
London
,
1994
), Chap.4, pp.
287
430
.
15.
M. P.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
,
“Single-bubble sonoluminescence,”
Rev. Mod. Phys.
74
,
425
483
(
2002
).
16.
A.
Prosperetti
, “
Nonlinear oscillations of gas bubbles in liquids. transient solutions and the connection between subharmonic signal and cavitation
,”
J. Acoust. Soc. Am.
57
,
810
821
(
1975
).
17.
N.
de Jong
,
A.
Bouakaz
, and
P. J. A.
Frinking
,
“Basic acoustic properties of microbubbles,”
Echocardiogr.
19
,
229
240
(
2002
).
18.
P.
Marmottant
,
S. M.
van der Meer
,
M.
Emmer
,
M.
Versluis
,
N.
de Jong
,
S.
Hilgenfeldt
, and
D.
Lohse
,
“A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture,”
J. Acoust. Soc. Am.
118
,
3499
3505
(
2005
).
19.
A. A.
Doinikov
and
P. A.
Dayton
,
“Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents,”
J. Acoust. Soc. Am.
121
,
3331
3340
(
2007
).
20.
M.
Emmer
,
A.
van Wamel
,
D.
Goertz
, and
N.
de Jong
,
“The onset of microbubble vibration,”
Ultrasound Med. Biol.
33
,
941
949
(
2007
).
21.
S.
van der Meer
,
B.
Dollet
,
M.
Voormolen
,
C.
Chin
,
A.
Bouakaz
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
,
“Microbubble spectroscopy of ultrasound contrast agents,”
J. Acoust. Soc. Am.
121
,
648
656
(
2007
).
22.
J.
Sijl
,
E.
Gaud
,
P. J. A.
Frinking
,
M.
Arditi
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
,
“Acoustic characterization of single ultrasound contrast agent microbubbles,”
J. Acoust. Soc. Am.
124
,
4091
4097
(
2008
).
23.
E.
Stride
, “
The influence of surface adsorption on microbubble dynamics
,”
Philos. Trans. R. Soc. London, Ser. A
366
,
2103
2115
(
2008
).
24.
K.
Chetty
,
E.
Stride
,
C. A.
Sennoga
,
J. V.
Hajnal
, and
R. J.
Eckersley
,
“High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
1333
1342
(
2008
).
25.
M.
Emmer
,
H. J.
Vos
, and
N.
de Jong
,
“Radial modulation of single microbubbles,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
,
2370
2379
(
2009
).
26.
J.
Tu
,
J.
Guan
,
Y.
Qiu
, and
T. J.
Matula
,
“Estimating the shell parameters of SonoVue microbubbles using light scattering,”
J. Acoust. Soc. Am.
126
,
2954
2962
(
2009
).
27.
M.
Overvelde
,
V.
Garbin
,
J.
Sijl
,
B.
Dollet
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
,
“Nonlinear shell behavior of phospholipid-coated microbubbles,”
Ultrasound Med. Biol.
36
,
2080
2092
(
2010
).
28.
K. E.
Morgan
,
J. S.
Allen
,
P. A.
Dayton
,
J. E.
Chomas
,
A. L.
Klibanov
, and
K. W.
Ferrara
,
“Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1494
1509
(
2000
).
29.
A. A.
Doikinov
,
S.
Zhao
, and
P. A.
Dayton
,
“Modeling of the acoustic response from contrast agent microbubbles near a rigid wall,”
Ultrasonics
49
,
195
201
(
2009
).
30.
P. A.
Frost
and
E. Y.
Harper
,
“Acoustic radiation from surfaces oscillating at large amplitude and small Mach number,”
J. Acoust. Soc. Am.
58
,
318
325
(
1975
).
31.
J. R.
Lindner
,
J.
Song
,
A. R.
Jayaweera
,
J.
Sklenar
, and
S.
Kaul
,
“Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration,”
J. Am. Soc. Echocardiogr.
15
,
396
403
(
2002
).
32.
S.
Zhao
,
K. W.
Ferrara
, and
P. A.
Dayton
,
“Asymmetric oscillation of adherent targeted ultrasound contrast agents,”
Appl. Phys. Lett.
87
,
134103
(
2005
).
33.
V.
Garbin
,
D.
Cojoc
,
E.
Ferrari
,
E.
Di Fabrizio
,
M. L. J.
Overvelde
,
S. M.
van der Meer
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
,
“Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging,”
Appl. Phys. Lett.
90
,
114103
(
2007
).
34.
C. F.
Caskey
,
S. M.
Stieger
,
S.
Qin
,
P. A.
Dayton
, and
K. W.
Ferrara
,
“Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall,”
J. Acoust. Soc. Am.
122
,
1191
1200
(
2007
).
35.
H. J.
Vos
,
B.
Dollet
,
J. G.
Bosch
,
M.
Versluis
, and
N.
de Jong
,
“Nonspherical vibrations of microbubbles in contact with a wall—A pilot study at low mechanical index,”
Ultrasound Med. Biol.
34
,
685
688
(
2008
).
36.
C. T.
Chin
,
C.
Lancée
,
J. M. G.
Borsboom
,
F.
Mastik
,
M. E.
Frijlink
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames
,”
Rev. Sci. Instrum.
74
,
5026
5034
(
2003
).
37.
K.
Vokurka
, “
On Rayleigh’s model of a freely oscillating bubble. I. Basic relations
,”
Czech. J. Phys. Sect. B
35
,
28
40
(
1985
).
38.
V.
Garbin
,
B.
Dollet
,
M.
Overvelde
,
D.
Cojoc
,
E.
Di Fabrizio
,
L.
van Wijngaarden
,
A.
Prosperetti
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
,
“History force on coated microbubbles propelled by ultrasound,”
Phys. Fluids
21
,
092003
(
2009
).
39.
D. H.
Kim
,
M.
Costello
,
P.
Duncan
, and
D.
Needham
,
“Mechanical properties and microstructure of polycrystalline phospholipid monolayer shells: Novel solid microparticles,”
Langmuir
19
,
8455
8466
(
2003
).
40.
N.
de Jong
,
M.
Emmer
,
C.
Chin
,
A.
Bouakaz
,
F.
Mastik
,
D.
Lohse
, and
M.
Versluis
,
“ ‘Compression-only’ behavior of phospholipid-coated contrast bubbles,”
Ultrasound Med. Biol.
33
,
653
656
(
2007
).
41.
J.
Sijl
,
M.
Overvelde
,
B.
Dollet
,
V.
Garbin
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
, “ ‘
Compression-only’ behavior: A second order nonlinear response of ultrasound contrast agent microbubbles
,”
J. Acoust. Soc. Am.
129
,
1729
1739
(
2011
).
42.
M. S.
Longuet-Higgins
, “
Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes
,”
J. Fluid Mech.
201
,
525
542
(
1989
).
43.
B.
Dollet
,
S.
van der Meer
,
V.
Garbin
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
,
“Nonspherical oscillations of ultrasound contrast agent microbubbles,”
Ultrasound Med. Biol.
34
,
1465
1473
(
2008
).
44.
M.
Versluis
,
D.
Goertz
,
P.
Palanchon
,
I. L.
Heitman
,
S. M.
van der Meer
,
B.
Dollet
,
N.
de Jong
, and
D.
Lohse
,
“Microbubble shape oscillations excited through ultrasonic parametric driving,”
Phys. Rev. E
82
,
026321
(
2010
).
45.
P. L. M. J.
van Neer
,
H. J.
Vos
, and
N.
de Jong
,
“Reflector-based phase calibration of ultrasound transducers,”
Ultrasonics
51
,
1
6
(
2011
).
46.
P.
Marmottant
and
S.
Hilgenfeldt
,
“Controlled vesicle deformation and lysis by single oscillating bubbles,”
Nature (London)
423
,
153
156
(
2003
).
47.
P.
Prentice
,
A.
Cuschieri
,
K.
Dholokia
,
M.
Prausnitz
, and
P.
Campbell
,
“Membrane disruption by optically controlled microbubble cavitation,”
Nat. Phys.
148
,
1
4
(
2005
).
48.
X.
Liu
and
J.
Wu
,
“Acoustic microstreaming around an isolated encapsulated microbubble,”
J. Acoust. Soc. Am.
125
,
1319
1330
(
2009
).
49.
H.
Medwin
,
“Counting bubbles acoustically: A review,”
Ultrasonics
15
,
7
13
(
1977
).
50.
A. D.
Phelps
and
T. G.
Leighton
,
“High-resolution bubble sizing through detection of the subharmonic response with a two-frequency excitation technique,”
J. Acoust. Soc. Am.
99
,
1985
1992
(
1996
).
51.
D.
Maresca
,
M.
Emmer
,
P.
van Neer
,
H.
Vos
,
M.
Versluis
,
M.
Muller
,
N.
de Jong
, and
A.
van der Steen
,
“Acoustic sizing of an ultrasound contrast agent,”
Ultrasound Med. Biol.
36
,
1713
1721
(
2010
).
52.
J.
Guan
and
T. J.
Matula
,
“Using light scattering to measure the response of individual ultrasound contrast microbubbles subjected to pulsed ultrasound in vitro,”
J. Acoust. Soc. Am.
116
,
2832
2842
(
2004
).
53.
K.
Hettiarachchi
,
E.
Talu
,
M. L.
Longo
,
P. A.
Dayton
, and
A. P.
Lee
,
“On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging,”
Lab on a Chip
7
,
463
468
(
2007
).
54.
B.
Dollet
,
W.
van Hoeve
,
J. P.
Raven
,
P.
Marmottant
, and
M.
Versluis
,
“Role of the channel geometry on the bubble pinch-off in flow-focusing devices,”
Phys. Rev. Lett.
100
,
034504
(
2008
).
You do not currently have access to this content.