The chemical production of radicals inside acoustically driven bubbles is determined by the local temperature inside the bubbles. Therefore, modeling of chemical reaction rates in bubbles requires an accurate evaluation of the temperature field and the heat exchange with the liquid. The aim of the present work is to compare a detailed partial differential equation model in which the temperature field is spatially resolved with an ordinary differential equation model in which the bubble contents are assumed to have a uniform average temperature and the heat exchanges are modeled by means of a boundary layer approximation. The two models show good agreement in the range of pressure amplitudes in which the bubble is spherically stable.

1.
K. S.
Suslick
,
“Sonochemistry,”
Science
247
,
1439
1445
(
1990
).
2.
K. S.
Suslick
,
S. J.
Doktycz
, and
E. B.
Flint
,
“On the origin of sonoluminescence and sonochemistry,”
Ultrasonics
28
,
280
290
(
1990
).
3.
K. S.
Suslick
and
G. J.
Price
,
“Applications of ultrasound to materials chemistry,”
Annu. Rev. Mater. Sci.
29
,
295
326
(
1999
).
4.
Sonochemistry and Sonoluminescence
, edited by
L. A.
Crum
,
T. J.
Mason
,
J. L.
Reisse
, and
K. S.
Suslick
(
Kluwer Academic Publishers
,
Dordrecht
,
1999
), pp.
191
298
.
5.
T. J.
Mason
and
J. P.
Lorimer
,
Applied Sonochemistry, the Uses of Power Ultrasound in Chemistry and Processing
(
Wiley-VCH
,
New York
,
2002
), pp.
1
22
, 75–124.
6.
K. S.
Suslick
and
D. J.
Flannigan
,
“Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation,”
Annu. Rev. Phys. Chem.
59
,
659
683
(
2008
).
7.
D. F.
Gaitan
,
L. A.
Crum
,
C. C.
Church
, and
R. A.
Roy
,
“Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble,”
J. Acoust. Soc. Am.
91
,
3166
3183
(
1992
).
8.
L. A.
Crum
,
“Sonoluminescence,”
Phys. Today
47
,
22
29
(
1994
).
9.
B. P.
Barber
,
R. A.
Hiller
,
R.
Löfstedt
,
S. J.
Putterman
, and
K. R.
Weninger
,
“Defining the unknowns of sonoluminescence,”
Phys. Rep.
281
,
65
143
(
1997
).
10.
T. J.
Matula
,
“Inertial cavitation and single-bubble sonoluminescence,”
Philos. Trans. R. Soc. London, Ser. A
357
,
225
249
(
1999
).
11.
M. P.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
,
“Single bubble sonoluminescence,”
Rev. Mod. Phys.
74
,
425
484
(
2002
).
12.
V.
Kamath
,
A.
Prosperetti
, and
F. N.
Egolfopoulos
,
“A theoretical study of sonoluminescence,”
J. Acoust. Soc. Am.
94
,
248
260
(
1993
).
13.
D.
Lohse
,
M. P.
Brenner
,
T. F.
Dupont
,
S.
Hilgenfeldt
, and
B.
Johnston
,
“Sonoluminescing air bubbles rectify argon,”
Phys. Rev. Lett.
78
,
1359
1362
(
1997
).
14.
K.
Yasui
,
“Alternative model of single-bubble sonoluminescence,”
Phys. Rev. E
56
,
6750
6760
(
1997
).
15.
K.
Yasui
,
“Chemical reactions in a sonoluminescing bubble,”
J. Phys. Soc. Jpn.
66
,
2911
2920
(
1997
).
16.
W. C.
Moss
,
D. A.
Young
,
J. A.
Harte
,
J. L.
Levatin
,
B. F.
Rozsnyai
,
G. B.
Zimmerman
, and
I. H.
Zimmerman
,
“Computed optical emissions from a sonoluminescing bubble,”
Phys. Rev. E
59
,
2986
2992
(
1999
).
17.
B. D.
Storey
and
A. J.
Szeri
,
“Water vapour, sonoluminescence and sonochemistry,”
Proc. R. Soc. London, Ser. A
456
,
1685
1709
(
2000
).
18.
B. D.
Storey
and
A. J.
Szeri
,
“A reduced model of cavitation physics for use in sonochemistry,” Proc. R. Soc. London
,
Ser. A
457
,
1685
1700
(
2001
).
19.
R.
Toegel
,
S.
Hilgenfeldt
, and
D.
Lohse
,
“Suppressing dissociation in sonoluminescing bubbles: The effect of excluded volume,”
Phys. Rev. Lett.
88
,
034301
(
2002
).
20.
R.
Toegel
and
D.
Lohse
,
“Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory,”
J. Chem. Phys.
118
,
1863
(
2003
).
21.
V.
Kamath
and
A.
Prosperetti
,
“Numerical integration methods in gas-bubble dynamics,”
J. Acoust. Soc. Am.
85
,
1538
1548
(
1989
).
22.
V. Q.
Vuong
and
A. J.
Szeri
,
“Sonoluminescence and diffusive transport,”
Phys. Fluids
8
,
2354
2364
(
1996
).
23.
H. Y.
Cheng
,
M.-C.
Chu
,
P. T.
Leung
, and
L.
Yuan
,
“How important are shock waves to single-bubble sonoluminescence?,”
Phys. Rev. E
58
,
2705
2708
(
1998
).
24.
H.
Lin
and
A. J.
Szeri
,
“Shock formation in the presence of entropy gradients,”
J. Fluid Mech.
431
,
161
188
(
2001
).
25.
R.
Toegel
,
B.
Gompf
,
R.
Pecha
, and
D.
Lohse
,
“Does water vapor prevent upscaling sonoluminescence?,”
Phys. Rev. Lett.
85
,
3165
3168
(
2000
).
26.
K.
Yasui
,
T.
Tuziuti
,
Y.
Iida
, and
H.
Mitome
,
“Theoretical study of the ambient-pressure dependence of sonochemical reactions,”
J. Chem. Phys.
119
,
346
356
(
2003
).
27.
M. S.
Plesset
and
A.
Prosperetti
,
“Bubble dynamics and cavitation,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
28.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic Press
,
London
,
1994
), pp.
84
86
.
29.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
Oxford
,
1995
), pp.
47
67
.
30.
A.
Prosperetti
,
“Nonlinear oscillations of gas bubbles in liquids: steady-state solutions,”
J. Acoust. Soc. Am.
56
,
878
885
(
1974
).
31.
A.
Prosperetti
,
“Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquid,”
J. Acoust. Soc. Am
61
,
17
27
(
1977
).
32.
A.
Prosperetti
,
L. A.
Crum
, and
K. W.
Commander
,
“Nonlinear bubble dynamics,”
J. Acoust. Soc. Am.
83
,
502
514
(
1988
).
33.
A.
Prosperetti
and
Y.
Hao
,
“Modelling of spherical gas bubble oscillations and sonoluminescence,” Philos. Trans. R. Soc. London
,
Ser. A
357
,
203
223
(
1999
).
34.
D.
Lohse
and
S.
Hilgenfeldt
,
“Inert gas accumulation in sonoluminescing bubbles,”
J. Chem. Phys.
107
,
6986
6997
(
1997
).
35.
S.
Hilgenfeldt
,
S.
Grossmann
, and
D.
Lohse
,
“A simple explanation of light emission in sonoluminescence,”
Nature
398
,
402
405
(
1999
).
36.
M.
Plesset
,
“On the stability of fluid flows with spherical symmetry,”
J. Appl. Phys.
25
,
96
(
1954
).
37.
A.
Prosperetti
,
“Viscous effects on perturbed spherical flows,”
Quart. Appl. Math.
34
,
339
350
(
1977
).
38.
M. P.
Brenner
,
D.
Lohse
, and
T. F.
Dupont
,
“Bubble shape oscillations and the onset of sonoluminescence,”
Phys. Rev. Lett.
75
,
954
957
(
1995
).
39.
S.
Hilgenfeldt
,
D.
Lohse
, and
M. P.
Brenner
,
“Phase diagrams for sonoluminescing bubbles,”
Phys. Fluids
8
,
2808
2826
(
1996
).
40.
R. G.
Holt
and
D. F.
Gaitan
,
“Observation of stability boundaries in the parameter space of single bubble sonoluminescence,”
Phys. Rev. Lett.
77
,
3791
3794
(
1996
).
41.
M. P.
Brenner
,
T. F.
Dupont
,
S.
Hilgenfeldt
, and
D.
Lohse
,
“Brenner et al. reply,”
Phys. Rev. Lett.
80
,
3668
3669
(
1998
).
42.
E. H.
Trinh
,
D. B.
Thiessen
, and
R. G.
Holt
,
“Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: Experimental results,”
J. Fluid Mech.
364
,
253
272
(
1998
).
43.
D. F.
Gaitan
and
R. G.
Holt
,
“Experimental observations of bubble response and light intensity near the threshold for single bubble sonoluminescence in an air-water system,”
Phys. Rev. E
59
,
5495
5502
(
1999
).
44.
Y.
Hao
and
A.
Prosperetti
,
“The effect of viscosity on the spherical stability of oscillating gas bubbles,”
Phys. Fluids
11
,
1309
1317
(
1999
).
45.
M.
Versluis
,
D. E.
Goerts
,
P.
Palanchon
,
I. L.
Heitman
,
S. M.
van der Meer
,
B.
Dollet
,
N.
de Jong
, and
D.
Lohse
,
“Microbubble shape oscillations excited through ultrasonic parametric driving,”
Phys. Rev. E
82
,
026321
(
2010
).
46.
A.
Prosperetti
,
“The thermal behavior of oscillating gas bubbles,”
J. Fluid Mech.
222
,
587
(
1991
).
47.
R.
Toegel
,
S.
Hilgenfeldt
, and
D.
Lohse
,
“The effect of surfactants on single bubble sonoluminescence,”
Phys. Rev. Lett.
84
,
2509
2512
(
2000
).
48.
Visual Numerics
, “IMSL Numerical Libraries,” http://www.vni.com/products/imsl/ (Last viewed 3/09/2011).
49.
L. H.
Thompson
and
L. K.
Doraiswamy
,
“Sonochemistry: Science and engineering,”
Ind. Eng. Chem. Res.
38
,
1215
1249
(
1999
).
You do not currently have access to this content.