The chemical production of radicals inside acoustically driven bubbles is determined by the local temperature inside the bubbles. Therefore, modeling of chemical reaction rates in bubbles requires an accurate evaluation of the temperature field and the heat exchange with the liquid. The aim of the present work is to compare a detailed partial differential equation model in which the temperature field is spatially resolved with an ordinary differential equation model in which the bubble contents are assumed to have a uniform average temperature and the heat exchanges are modeled by means of a boundary layer approximation. The two models show good agreement in the range of pressure amplitudes in which the bubble is spherically stable.
REFERENCES
1.
K. S.
Suslick
, “Sonochemistry,”
Science
247
, 1439
–1445
(1990
). 2.
K. S.
Suslick
, S. J.
Doktycz
, and E. B.
Flint
, “On the origin of sonoluminescence and sonochemistry,”
Ultrasonics
28
, 280
–290
(1990
). 3.
K. S.
Suslick
and G. J.
Price
, “Applications of ultrasound to materials chemistry,”
Annu. Rev. Mater. Sci.
29
, 295
–326
(1999
). 4.
Sonochemistry and Sonoluminescence
, edited by L. A.
Crum
, T. J.
Mason
, J. L.
Reisse
, and K. S.
Suslick
(Kluwer Academic Publishers
, Dordrecht
, 1999
), pp. 191
–298
.5.
T. J.
Mason
and J. P.
Lorimer
, Applied Sonochemistry, the Uses of Power Ultrasound in Chemistry and Processing
(Wiley-VCH
, New York
, 2002
), pp. 1
–22
, 75–124.6.
K. S.
Suslick
and D. J.
Flannigan
, “Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation,”
Annu. Rev. Phys. Chem.
59
, 659
–683
(2008
). 7.
D. F.
Gaitan
, L. A.
Crum
, C. C.
Church
, and R. A.
Roy
, “Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble,”
J. Acoust. Soc. Am.
91
, 3166
–3183
(1992
). 8.
L. A.
Crum
, “Sonoluminescence,”
Phys. Today
47
, 22
–29
(1994
). 9.
B. P.
Barber
, R. A.
Hiller
, R.
Löfstedt
, S. J.
Putterman
, and K. R.
Weninger
, “Defining the unknowns of sonoluminescence,”
Phys. Rep.
281
, 65
–143
(1997
). 10.
T. J.
Matula
, “Inertial cavitation and single-bubble sonoluminescence,”
Philos. Trans. R. Soc. London, Ser. A
357
, 225
–249
(1999
). 11.
M. P.
Brenner
, S.
Hilgenfeldt
, and D.
Lohse
, “Single bubble sonoluminescence,”
Rev. Mod. Phys.
74
, 425
–484
(2002
). 12.
V.
Kamath
, A.
Prosperetti
, and F. N.
Egolfopoulos
, “A theoretical study of sonoluminescence,”
J. Acoust. Soc. Am.
94
, 248
–260
(1993
). 13.
D.
Lohse
, M. P.
Brenner
, T. F.
Dupont
, S.
Hilgenfeldt
, and B.
Johnston
, “Sonoluminescing air bubbles rectify argon,”
Phys. Rev. Lett.
78
, 1359
–1362
(1997
). 14.
K.
Yasui
, “Alternative model of single-bubble sonoluminescence,”
Phys. Rev. E
56
, 6750
–6760
(1997
). 15.
K.
Yasui
, “Chemical reactions in a sonoluminescing bubble,”
J. Phys. Soc. Jpn.
66
, 2911
–2920
(1997
). 16.
W. C.
Moss
, D. A.
Young
, J. A.
Harte
, J. L.
Levatin
, B. F.
Rozsnyai
, G. B.
Zimmerman
, and I. H.
Zimmerman
, “Computed optical emissions from a sonoluminescing bubble,”
Phys. Rev. E
59
, 2986
–2992
(1999
). 17.
B. D.
Storey
and A. J.
Szeri
, “Water vapour, sonoluminescence and sonochemistry,”
Proc. R. Soc. London, Ser. A
456
, 1685
–1709
(2000
). 18.
B. D.
Storey
and A. J.
Szeri
, “A reduced model of cavitation physics for use in sonochemistry,” Proc. R. Soc. London
, Ser. A
457
, 1685
–1700
(2001
).19.
R.
Toegel
, S.
Hilgenfeldt
, and D.
Lohse
, “Suppressing dissociation in sonoluminescing bubbles: The effect of excluded volume,”
Phys. Rev. Lett.
88
, 034301
(2002
). 20.
R.
Toegel
and D.
Lohse
, “Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory,”
J. Chem. Phys.
118
, 1863
(2003
). 21.
V.
Kamath
and A.
Prosperetti
, “Numerical integration methods in gas-bubble dynamics,”
J. Acoust. Soc. Am.
85
, 1538
–1548
(1989
). 22.
V. Q.
Vuong
and A. J.
Szeri
, “Sonoluminescence and diffusive transport,”
Phys. Fluids
8
, 2354
–2364
(1996
). 23.
H. Y.
Cheng
, M.-C.
Chu
, P. T.
Leung
, and L.
Yuan
, “How important are shock waves to single-bubble sonoluminescence?,”
Phys. Rev. E
58
, 2705
–2708
(1998
). 24.
H.
Lin
and A. J.
Szeri
, “Shock formation in the presence of entropy gradients,”
J. Fluid Mech.
431
, 161
–188
(2001
). 25.
R.
Toegel
, B.
Gompf
, R.
Pecha
, and D.
Lohse
, “Does water vapor prevent upscaling sonoluminescence?,”
Phys. Rev. Lett.
85
, 3165
–3168
(2000
). 26.
K.
Yasui
, T.
Tuziuti
, Y.
Iida
, and H.
Mitome
, “Theoretical study of the ambient-pressure dependence of sonochemical reactions,”
J. Chem. Phys.
119
, 346
–356
(2003
). 27.
M. S.
Plesset
and A.
Prosperetti
, “Bubble dynamics and cavitation,”
Annu. Rev. Fluid Mech.
9
, 145
–185
(1977
). 28.
29.
C. E.
Brennen
, Cavitation and Bubble Dynamics
(Oxford University Press
, Oxford
, 1995
), pp. 47
–67
.30.
A.
Prosperetti
, “Nonlinear oscillations of gas bubbles in liquids: steady-state solutions,”
J. Acoust. Soc. Am.
56
, 878
–885
(1974
). 31.
A.
Prosperetti
, “Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquid,”
J. Acoust. Soc. Am
61
, 17
–27
(1977
). 32.
A.
Prosperetti
, L. A.
Crum
, and K. W.
Commander
, “Nonlinear bubble dynamics,”
J. Acoust. Soc. Am.
83
, 502
–514
(1988
). 33.
A.
Prosperetti
and Y.
Hao
, “Modelling of spherical gas bubble oscillations and sonoluminescence,” Philos. Trans. R. Soc. London
, Ser. A
357
, 203
–223
(1999
).34.
D.
Lohse
and S.
Hilgenfeldt
, “Inert gas accumulation in sonoluminescing bubbles,”
J. Chem. Phys.
107
, 6986
–6997
(1997
). 35.
S.
Hilgenfeldt
, S.
Grossmann
, and D.
Lohse
, “A simple explanation of light emission in sonoluminescence,”
Nature
398
, 402
–405
(1999
). 36.
M.
Plesset
, “On the stability of fluid flows with spherical symmetry,”
J. Appl. Phys.
25
, 96
(1954
). 37.
A.
Prosperetti
, “Viscous effects on perturbed spherical flows,”
Quart. Appl. Math.
34
, 339
–350
(1977
).38.
M. P.
Brenner
, D.
Lohse
, and T. F.
Dupont
, “Bubble shape oscillations and the onset of sonoluminescence,”
Phys. Rev. Lett.
75
, 954
–957
(1995
). 39.
S.
Hilgenfeldt
, D.
Lohse
, and M. P.
Brenner
, “Phase diagrams for sonoluminescing bubbles,”
Phys. Fluids
8
, 2808
–2826
(1996
). 40.
R. G.
Holt
and D. F.
Gaitan
, “Observation of stability boundaries in the parameter space of single bubble sonoluminescence,”
Phys. Rev. Lett.
77
, 3791
–3794
(1996
). 41.
M. P.
Brenner
, T. F.
Dupont
, S.
Hilgenfeldt
, and D.
Lohse
, “Brenner et al. reply,”
Phys. Rev. Lett.
80
, 3668
–3669
(1998
). 42.
E. H.
Trinh
, D. B.
Thiessen
, and R. G.
Holt
, “Driven and freely decaying nonlinear shape oscillations of drops and bubbles immersed in a liquid: Experimental results,”
J. Fluid Mech.
364
, 253
–272
(1998
). 43.
D. F.
Gaitan
and R. G.
Holt
, “Experimental observations of bubble response and light intensity near the threshold for single bubble sonoluminescence in an air-water system,”
Phys. Rev. E
59
, 5495
–5502
(1999
). 44.
Y.
Hao
and A.
Prosperetti
, “The effect of viscosity on the spherical stability of oscillating gas bubbles,”
Phys. Fluids
11
, 1309
–1317
(1999
). 45.
M.
Versluis
, D. E.
Goerts
, P.
Palanchon
, I. L.
Heitman
, S. M.
van der Meer
, B.
Dollet
, N.
de Jong
, and D.
Lohse
, “Microbubble shape oscillations excited through ultrasonic parametric driving,”
Phys. Rev. E
82
, 026321
(2010
). 46.
A.
Prosperetti
, “The thermal behavior of oscillating gas bubbles,”
J. Fluid Mech.
222
, 587
(1991
). 47.
R.
Toegel
, S.
Hilgenfeldt
, and D.
Lohse
, “The effect of surfactants on single bubble sonoluminescence,”
Phys. Rev. Lett.
84
, 2509
–2512
(2000
). 48.
Visual Numerics
, “IMSL Numerical Libraries,” http://www.vni.com/products/imsl/ (Last viewed 3/09/2011).49.
L. H.
Thompson
and L. K.
Doraiswamy
, “Sonochemistry: Science and engineering,”
Ind. Eng. Chem. Res.
38
, 1215
–1249
(1999
). © 2011 Acoustical Society of America.
2011
Acoustical Society of America
You do not currently have access to this content.