The effect of an acoustically driven bubble on the acoustics of a liquid-filled pipe is theoretically analyzed and the dimensionless groups of the problem are identified. The different regimes of bubble volume oscillations are predicted theoretically with these dimensionless groups. Three main regimes can be identified: (1) For small bubbles and weak driving, the effect of the bubble oscillations on the acoustic field can be neglected. (2) For larger bubbles and still small driving, the bubble affects the acoustic field, but due to the small driving, a linear theory is sufficient. (3) For large bubbles and large driving, the two-way coupling between the bubble and the flow dynamics requires the solution of the full nonlinear problem. The developed theory is then applied to an air bubble in a channel of an inkjet printhead. A numerical model is developed to test the predictions of the theoretical analysis. The Rayleigh-Plesset equation is extended to include the influence of the bubble volume oscillations on the acoustic field and vice versa. This modified Rayleigh-Plesset equation is coupled to a channel acoustics calculation and a Navier-Stokes solver for the flow in the nozzle. The numerical simulations indeed confirm the predictions of the theoretical analysis.

1.
S.
Qin
, and
K. W.
Ferrara
, “
Acoustic response of compliable microvessels containing ultrasound contrast agents
,”
Phys. Med. Biol.
51
,
5065
5088
(
2006
).
2.
C. F.
Caskey
,
S. M.
Stieger
,
S.
Qin
,
P. A.
Dayton
, and
K. W.
Ferrara
, “
Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall
,”
J. Acoust. Soc. Am.
122
,
1191
1200
(
2007
).
3.
S.
Qin
, and
K. W.
Ferrara
, “
The natural frequency of oscillation of ultrasound contrast agents in microvessels
,”
Ultrasound Med. Biol.
33
,
1140
1148
(
2007
).
4.
K.
Chetty
,
E.
Stride
,
C. A.
Sennoga
,
J. V.
Hajnal
, and
R. J.
Eckersley
, “
High-speed optical observations and simulation results of SonoVue microbubbles at low pressure insonation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
1333
1342
(
2008
).
5.
J.
Sijl
,
E.
Gaud
,
P. J. A.
Frinking
,
M.
Arditi
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
, “
Acoustic characterization of single ultrasound contrast agent microbubbles
,”
J. Acoust. Soc. Am.
124
,
4091
4097
(
2008
).
6.
R. J.
Dijkink
,
J. P.
van der Dennen
,
C. D.
Ohl
, and
A
Prosperetti
, “
The ‘acoustic scallop’: a bubble-powered actuator
,”
J. Micromech. Microeng.
16
,
1653
(
2006
).
7.
J.
de Jong
,
G.
de Bruin
,
H.
Reinten
,
M.
van den Berg
,
H.
Wijshoff
,
M.
Versluis
, and
D.
Lohse
, “
Air entrapment in piezo-driven inkjet printheads
,”
J. Acoust. Soc. Am.
120
,
1257
1265
(
2006
).
8.
J.
de Jong
,
R.
Jeurissen
,
H.
Borel
,
M.
van den Berg
,
M.
Versluis
,
H.
Wijshoff
,
A.
Prosperetti
,
H.
Reinten
, and
D.
Lohse
, “
Entrapped air bubbles in piezo-driven inkjet printing: Their effect on droplet velocity
,”
Phys. Fluids
18
,
121511
(
2006
).
9.
H.
Wijshoff
, “
The dynamics of the piezo inkjet printhead operation
,”
Phys. Rep.
491
,
77
177
(
2010
).
10.
J. R.
Womersley
, “
Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known
,”
J. Physiol.
127
,
553
563
(
1955
).
11.
H.
Tijdeman
, “
On the propagation of sound waves in cylindrical tubes
,”
J. Sound Vibr.
39
,
1
(
1975
).
12.
C. E.
Brennen
,
Cavitation and Bubble Dynamics, 1-294
(
Oxford University Press
,
Oxford
,
1995
).
13.
T. G.
Leighton
,
The Acoustic Bubble, 1-613
(
Academic
,
London
,
1994
).
14.
M. S.
Plesset
, and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
85
(
1977
).
15.
M. P.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Single-bubble sonoluminescence
,”
Rev. Mod. Phys.
74
,
425
484
(
2002
).
16.
K.
Sato
,
Y.
Tomira
, and
A.
Shima
, “
Numerical analysis of a gas bubble near a rigid boundary in an oscillatory pressure field
,”
J. Acoust. Soc. Am.
95
,
2416
2424
(
1994
).
17.
S.
Popinet
, and
S.
Zaleski
, “
Bubble collapse near a solid boundary: a numerical study of the influence of viscosity
,”
J. Fluid Mech.
464
,
137
163
(
2002
).
18.
R. I.
Nigmatulin
,
I. S.
Akhatov
, and
N. K.
Vakhitova
, “
Forced oscillations of a gas bubble in a spherical volume of a compressible liquid
,”
J. Appl. Mech. Tech. Phys.
40
,
285
291
(
1999
).
19.
T. G.
Leighton
,
P. R.
White
,
C. L.
Morfey
,
J. W. L.
Clarke
,
G. J.
Heald
,
H. A.
Dumbrell
, and
K. R.
Holland
, “
The effect of reverberation on the damping of bubbles
,”
J. Acoust. Soc. Am.
112
,
1366
1376
(
2002
).
20.
T. G.
Leighton
,
P. R.
White
, and
M. A.
Marsden
, “
Applications of one-dimensional bubbles to lithotripsy, and to diver response to low frequency sound
,”
Acta Acust.
3
,
517
529
(
1995
).
21.
T. G.
Leighton
,
P. R.
White
, and
M. A.
Marsden
, “
The one-dimensional bubble: An unusual oscillator, with applications to human bioeffects of underwater sound
,”
Eur. J. Phys.
16
,
275
281
(
1995
).
22.
H.
Ouz
and
A.
Prosperetti
, “
The natural frequency of oscillation of gas bubbles in tubes
,”
J. Acoust. Soc. Am.
103
,
3301
(
1998
).
23.
E.
Sassaroli
and
K.
Hynynen
, “
Forced linear oscillations of microbubbles in blood capillaries
,”
J. Acoust. Soc. Am.
115
,
3235
3243
(
2004
).
24.
J.
Cui
,
M.
Hamilton
,
P.
Wilson
, and
E.
Zabolotskaya
, “
Bubble pulsations between parallel plates
,”
J. Acoust. Soc. Am.
119
,
2067
2072
(
2006
).
25.
E.
Ory
,
H.
Yuan
,
A.
Prosperetti
,
S.
Popinet
, and
S.
Zaleski
, “
Growth and collapse of a vapor bubble in a narrow tube
,”
Phys. Fluids
12
,
1268
1277
(
2000
).
26.
R.
Jeurissen
,
J.
de Jong
,
H.
Reinten
,
M.
van den Berg
,
H.
Wijshoff
,
M.
Versluis
, and
D.
Lohse
, “
Effect of an entrained air bubble on the acoustics of an ink channel
,”
J. Acoust. Soc. Am.
123
,
2496
2505
(
2008
).
27.
R.
Jeurissen
,
A.
van der Bos
,
H.
Reinten
,
M.
van den Berg
,
H.
Wijshoff
,
J.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Acoustic measurement of bubble size in an inkjet printhead
,”
J. Acoust. Soc. Am.
126
,
2184
2190
(
2009
).
28.
L. F.
Shampine
, and
S.
Thompson
, “
Solving DDEs in MATLAB
,”
Appl. Numer. Math.
37
,
441
458
(
2001
).
29.
W. H.
Beltman
, “
Viscothermal wave propagation including acousto-elastic interaction, part I: Theory
,”
J. Sound Vibr.
227
,
555
586
(
1999
).
30.
S.
Hilgenfeldt
,
M. P.
Brenner
,
S.
Grossmann
, and
D.
Lohse
, “
Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles
,”
J. Fluid Mech.
365
,
171
204
(
1998
).
You do not currently have access to this content.