Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics.

1.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
(
Wiley
,
New York
,
2009
), Chaps. 2–5.
2.
M.A
,
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low-frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
);
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated solid. II. High-frequency range
,”
J. Acoust. Soc. Am.
28
,
179
191
(
1956
).
3.
D. L.
Johnson
,
J.
Koplik
,
R.
Dashen
,“
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
4.
D.
Lafarge
,
P.
Lemarinier
,
J. F.
Allard
, and
V.
Tarnow
, “
Dynamic compressibility of air in porous structures at audible frequencies
,”
J. Acoust. Soc. Am.
102
(
4
),
1995
2006
(
1997
).
5.
S. R.
Pride
,
F. D.
Morgan
, and
A.F.
Gangi
, “
Drag forces of porous-medium acoustics
,”
Phys. Rev. B
47
,
4964
4975
(
1993
).
6.
D.
Lafarge
, “
Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique
,” Ph.D. thesis,
Université du Maine
, Le Mans, France (
1993
) (Sound propagation in rigid porous media saturated by a viscothermal fluid).
7.
J. L.
Auriault
,
L.
Borne
, and
R.
Chambon
, “
Dynamics of porous saturated media, checking of the generalized law of Darcy
,”
J. Acoust. Soc. Am.
77
(
5
),
1641
1650
(
1985
).
8.
J. F.
Allard
,
M.
Henry
,
J.
Tizianel
,
L.
Kelders
, and
W.
Lauriks
, “
Sound propagation in air-saturated random packings of beads
,”
J. Acoust. Soc. Am.
104
,
2004
2007
(
1998
).
9.
F.
Asdrubali
and
K. V.
Horoshenkov
, “
The acoustic properties of expanded clay granulates
,”
Building Acoust.
9
(
2
),
85
98
(
2002
).
10.
V. V.
Voronina
and
K.V.
Horoshenkov
, “
A new empirical model for the acoustic properties of loose granular media
,”
Appl. Acoust.
64
,
415
432
(
2004
).
11.
A. M.
Chapman
and
J. J. L.
Higdon
, “
Oscillatory Stokes flow in periodic porous media
,”
Phys. Fluids
4
,
2099
2116
(
1992
).
12.
O.
Umnova
,
K.
Attenborough
, and
K. M.
Li
, “
Cell model calculations of dynamic drag parameters in packings of spheres
,”
J. Acoust. Soc. Am.
107
,
313
318
(
2000
).
13.
O.
Umnova
,
K.
Attenborough
, and
K. M.
Li
, “
A cell model for the acoustical properties of packings of spheres
,”
Acta Acust.
87
,
226
235
(
2001
).
14.
E.
Sanchez-Palencia
,
Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics
, edited by
J.
Ehlers
,
K.
Hepp
,
R.
Kippenhahn
, and
J.
Zittartz
(
Springer-Verlag
,
Berlin
,
1980
).
15.
J. L.
Auriault
,
C.
Boutin
, and
C.
Geindreau
,
Homogenization of Coupled Phenomena in Heterogenous Media
(
Wiley
,
London
,
2009
).
16.
S.
Gasser
,
F.
Paun
, and
Y.
Brechet
, “
Absorptive properties of rigid porous media: Application to face centered cubic sphere packing
,”
J. Acoust. Soc. Am.
117
(
4
),
2090
2099
(
2005
).
17.
C.-Y.
Lee
,
M. J.
Leamy
, and
J. H.
Nadler
, “
Acoustic absorption calculation in irreducible porous media: A unified computational approach
,”
J. Acoust. Soc. Am.
126
(
4
),
1862
1870
(
2009
).
18.
C.
Boutin
and
C.
Geindreau
, “
Estimates and bounds of dynamic permeability of granular media
,”
J. Acoust. Soc. Am.
124
(
6
),
3576
3593
(
2008
).
19.
C.
Boutin
and
C.
Geindreau
, “
Periodic homogenization and consistent estimates of transport parameters through sphere and polyhedron packings in the whole porosity range
,”
Phys. Rev. E
82
,
036313
(
2010
).
20.
J. L.
Auriault
and
C.
Boutin
, “
Deformable porous media with double porosity III: Acoustics
,”
Transp. Porous Media
14
,
143
162
(
1994
).
21.
C.
Boutin
,
P.
Royer
, and
J. L.
Auriault
, “
Acoustic absorption of porous surfacing with dual porosity
,”
Int. J. Solids Struct.
35
,
4709
4737
(
1998
).
22.
X.
Olny
and
C.
Boutin
, “
Acoustic wave propagation in double porosity media
,”
J. Acoust. Soc. Am
114
(
1
),
73
89
(
2003
).
23.
G.
Pispola
,
K. V.
Horoshenkov
, and
A.
Khan
, “
Comparison of two modeling approaches for highly heterogeneous porous media
,”
J. Acoust. Soc. Am.
121
(
2
),
961
966
(
2007
).
24.
N.
Atalla
,
F.
Sgard
,
X.
Olny
, and
R.
Panneton
, “
Acoustic absorption of macro-perforated porous materials
,”
J. Sound. Vibr.
243
(
4
),
659
678
(
2001
).
25.
E.
Gourdon
and
M.
Seppi
, “
Extension of double porosity model to porous materials containing specific porous inclusions
,”
Acta Acust. United Acust.
96
(
2
),
275
291
(
2010
).
26.
J.
Chastanet
,
P.
Royer
, and
J.-L.
Auriault
,“
Acoustics with wall-slip flow of gas saturated porous media
,”
Mech. Res. Commun.
31
,
277
286
(
2004
).
28.
J.
Chastanet
,
P.
Royer
and
J.-L.
Auriault
,“
Flow of low pressure gas through dual-porosity media
,”
Transp. Porous Media
66
(
3
),
457
479
(
2007
).
29.
R.
Venegas
and
O.
Umnova
, “
Numerical modelling of sound absorptive properties of double porosity granular materials
,” in
Proceedings of Comsol Conference 2010
, Paris, France,
2010
, Paper No. 8303, http://www.comsol.com/papers/8303 (Last viewed April 14, 2011).
30.
R. J. S.
Brown
, “
Connection between formation factor for electrical-resistivity and fluid-solid coupling factor in Biot equations for acoustic waves in fluid-filled porous media
,”
Geophysics
45
,
1269
1275
(
1980
).
31.
Y.
Champoux
and
J. F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
(
4
),
1975
1979
(
1991
).
32.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
(
Dover
,
New York
,
1972
), Chap. 10.
33.
ISO 10534-2:2001, “Acoustics—Determination of sound absorption coefficient and impedance in impedance tubes—Part 2: Transfer-function method, 2001.
34.
J.
Serra
.
Image Analysis and Mathematical Morphology
(
Academic Press
,
London
,
1982
), Chap. 11.
35.
W.
Man
,
A.
Donev
,
F.
Stillinger
,
M.
Sullivan
,
W.
Russel
,
D.
Heeger
,
S.
Inati
,
S.
Torquato
, and
P. M.
Chaikin
, “
Experiments on random packings of ellipsoids
,”
Phys. Rev. Lett.
94
,
198001
(
2005
).
36.
C.
Song
,
P.
Wang
, and
H.A.
Makse
, “
A phase diagram for jammed matter
,”
Nature
453
,
629
632
(
2008
).
37.
J.
Plateau
,
Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires
(
Gauthier
,
Paris
,
1873
), Vol.
1
, Chap. 5.
38.
N.J.
Mills
,
Polymer Foams Handbook: Engineering and Biomechanics, Applications and Design Guide
(
Butterworth-Heinemann
,
London
,
2007
), Chap. 1.
39.
D. L.
Weaire
,
The Kelvin Problem: Foam Structures of Minimal Surface Area
(
Taylor and Francis
,
London
,
2000
).
40.
C.
Perrot
,
F.
Chevillotte
, and
R.
Panneton
, “
Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments
,”
J. Appl. Phys.
103
,
024909
(
2008
).
41.
F.
Chevillotte
,
C.
Perrot
, and
R.
Panneton
,“
Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams
,”
J. Acoust. Soc. Am.
128
(
4
),
1766
1776
(
2010
).
42.
T. J.
Chung
,
Computational Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
2002
), Chaps. 10 and 12.
43.
W.
Zimmerman
,
Process Modelling and Simulation with Finite Element Methods, Series on Stability
(
World Scientific
,
Singapore
,
2004
), p.
182
.
44.
K.
Price
,
R.
Storn
, and
J.
Lampinen
,
Differential Evolution: A Practical Approach to Global Optimization
(
Springer-Verlag
,
Berlin
,
2005
);
see also http://www.icsi.berkeley.edu/̃storn/code.html (Last viewed March 31,
2011
).
45.
EN 29053:1993, “Acoustics. Materials for acoustical applications. Determination of airflow resistance,” 1993.
46.
D. D.
Do
,
Adsorption Analysis: Equilibria and Kinetics
(
Imperial College Press
,
London
,
1998
), pp.
5
and
.
47.
V. F.
Kozlov
,
A. V.
Fedorov
, and
N. D.
Malmuth
, “
Acoustic properties of rarefied gases inside pores of simple geometries
,”
J. Acoust. Soc. Am.
117
,
3402
3411
(
2005
).
48.
O.
Umnova
,
D.
Tsiklauri
, and
R.
Venegas
, “
Effect of boundary slip on the acoustical properties of microfibrous materials
,”
J. Acoust. Soc. Am.
126
(
4
),
1850
1861
(
2009
).
49.
C. D.
Smith
and
T. L.
Parrott
, “
Comparison of three methods for measuring acoustic properties of bulk materials
,”
J. Acoust. Soc. Am.
74
(
5
),
1577
1582
(
1983
).
50.
R.
Raspet
,
C. J.
Hickey
, and
J. M.
Sabatier
, “
The effect of evaporation-condensation on sound propagation in cylindrical tubes using the low reduced frequency approximation
,”
J. Acoust. Soc. Am.
105
(
1
),
65
73
(
1999
).
51.
J.
Valenza
,
C.-J.
Hsu
,
R.
Ingale
,
N.
Gland
,
H. A.
Makse
, and
D. L.
Johnson
, “
Dynamic effective mass of granular media and the attenuation of structure-borne sound
,”
Phys. Rev. E
80
,
051304
(
2009
).
52.
J.R.
Wright
, “
The virtual loudspeaker cabinet
,”
J. Audio Eng. Soc.
51
(
4
),
244
247
(
2003
).
53.
F.
Bechwati
,
Acoustics of activated carbon
, Ph.D. thesis,
University of Salford
, Salford, UK,
2008
.
54.
T. J.
Mellow
,
O.
Umnova
,
K.
Drossos
,
K.
Holland
,
A.
Flewitt
, and
L.
Kärkkäinen
, “
On the adsorption-desorption relaxation time of carbon in very narrow ducts
,” in
Proceedings of Acoustics 08, CD-ROM 01
, pp.
795
800
,
Paris, France
,
2008
, available at http://intellagence.eu.com/acoustics2008/acoustics2008/cd1/data/articles/000871.pdf (Last viewed April 14, 2011).
55.
Y.
Okudaira
,
Y.
Kurihara
,
H.
Ando
,
M.
Satoh
, and
K.
Miyanami
, “
Sound absorption measurements for evaluating dynamic physical properties of a powder bed
,”
Powder Technol.
77
(
1
),
39
48
(
1993
).
You do not currently have access to this content.