An experimental investigation of the parameters controlling the whistling frequency and amplitude of an orifice in a confined turbulent flow is undertaken. A circular single hole orifice with sharp edges, a hole diameter equal to 0.015 m and a thickness equal to 0.005 m, is arranged in an air test rig with an inner diameter equal to 0.03 m. The Mach number ranges around 0.02 and the Reynolds number around 104. Variable reflecting boundary conditions are arranged upstream and downstream, and several flow velocities are tested. It is found that the Bode–Nyquist criterion accurately predicts the conditions of self-sustained oscillation and the value of the whistling frequency. Furthermore, it is found that the acoustic velocity in whistling regime varies from 1% to 15% of the steady flow velocity, and that it depends on the overall acoustic reflection of the surrounding pipe and on the Strouhal number.

1.
D.
Rockwell
and
E.
Naudascher
,
“Self-sustained oscillations of impinging free shear layers,”
Annual Rev. Fluid Mech.
11
,
67
94
(
1979
).
2.
W. K.
Blake
,
Mechanics of Flow-Induced Sound and Vibration
(
Academic
,
Orlando
,
1986
), Chap. 3.
3.
M. S.
Howe
,
Acoustic of Fluid-Structure Interaction
(
Cambridge University Press
,
London
,
1998
), Chap. 6.
4.
Y.
Aurégan
,
A.
Maurel
,
V.
Pagneux
, and
J. F.
Pinton
,
Sound-Flow Interactions, Lecture Notes in Physics
(
Springer
,
Berlin
,
2002
), Chap. 1.
5.
J. C.
Bruggeman
,
A.
Hirschberg
,
M. E. H.
Van Dongen
,
A. P. J.
Wijnands
, and
J.
Gorter
, “
Self-sustained aero-acoustic pulsations in gas transport systems: Experimental study of the influence of closed side branches
,”
J. Sound Vib.
150
,
371
391
(
1991
).
6.
S.
Ziada
and
E. T.
Buhlmann
, “
Self-excited resonances of two side-branches in close proximity
,”
J. Fluids Struct.
6
,
583
601
(
1992
).
7.
S.
Dequand
,
X.
Luo
,
J. F. H.
Willems
, and
A.
Hirschberg
, “
Helmholtz-like resonator self-sustained oscillations, part 1
,”
AIAA J.
41
,
408
415
(
2003
).
8.
P.
Lafon
,
S.
Caillaud
,
J. P.
Devos
, and
C.
Lambert
, “
Aeroacoustical coupling in a ducted shallow cavity and fluid/structure effects on a steam line
,”
J. Fluids Struct.
18
,
695
713
(
2003
).
9.
A. B. C.
Anderson
, “
A jet-tone orifice number for orifices of small thickness-diameter ratio
,”
J. Acoust. Soc. Am.
26
,
21
25
(
1954
).
10.
P.
Testud
,
Y.
Aurégan
,
P.
Moussou
, and
A.
Hirschberg
, “
The whistling potentiality of an orifice in a confined flow using an energetic criterion
,”
J. Sound Vib.
325
,
769
780
(
2009
).
11.
B.
Karthik
,
S. R.
Chakravarthy
, and
R. I.
Sujith
, “
Mechanism of pipe-tone excitation by flow through an orifice in duct
,”
Int. J. Aeroacoust
.
7
,
321
348
(
2008
).
12.
Y.
Aurégan
and
R.
Starobinsky
, “
Determination of acoustic energy dissipation/production potentiality from the acoustic transfer functions of a multiport
,”
Acust. Acta Acust.
85
,
788
792
(
1999
).
13.
H.
Boden
and
M.
Åbom
, “
Influence of errors on the two-microphone method for acoustic properties in ducts
,”
J. Acoust. Soc. Am.
79
,
541
549
(
1986
).
14.
M. L.
Munjal
and
A. G.
Doige
, “
Theory of a two source-location method for direct experimental evaluation of the four-pole parameters of an aeroacoustic element
,”
J. Sound Vib.
141
,
323
333
(
1990
).
15.
M.
Åbom
, “
Measurement of the scattering-matrix of acoustical two-port
,”
Mech. Syst. Signal Process.
5
,
89
104
(
1991
).
16.
M.
Åbom
, “
A note on the experimental determination of acoustical two-port matrices
,”
J. Sound Vib.
155
,
185
188
(
1992
).
17.
Y.
Aurégan
and
M.
Leroux
, “
Failures in the discrete models for flow duct with perforations: An experimental investigation
,”
J. Sound Vib.
265
,
109
121
(
2003
).
18.
T. D.
Mast
and
A. D.
Pierce
, “
Describing function theory for flow excitation of resonators
,”
J. Acoust. Soc. Am.
97
,
163
172
(
1995
).
19.
H. R.
Graf
and
S.
Ziada
, “
Excitation source of a side-branch shear layer
,”
J. Sound Vib.
329
,
2825
2842
(
2010
).
20.
G.
Hofmans
,
R.
Boot
,
P.
Durrieu
,
Y.
Aurégan
, and
A.
Hirschberg
, “
Aeroacoustic response of a slit-shaped diaphragm in a pipe at low Helmholtz number, 1: Quasi-steady results
,”
J. Sound Vib.
244
,
35
56
(
2001
).
21.
G.
Hofmans
,
M.
Ranucci
,
G.
Ajello
,
Y.
Aurégan
, and
A.
Hirschberg
, “
Aeroacoustic response of a slit-shaped diaphragm in a pipe at low Helmholtz number, 2: Unsteady results
,”
J. Sound Vib.
244
,
37
77
(
2001
).
22.
P.
Moussou
,
P.
Testud
,
Y.
Aurégan
, and
A.
Hirschberg
,
“An acoustic criterion for the whistling of orifices in pipes,”
in
Proceedings of PVP 2007, number PVP2007-726157 in ASME Pressure Vessels and Piping 2007/Creep 8 Conference
,
San Antonio, TX
(July 22–26,
2007
).
23.
T.
Sattelmayer
and
W.
Polifke
, “
A novel method for the computation of the linear stability of combustors
,”
Combust. Sci. Technol.
175
,
477
497
(
2003
).
24.
M.
Karlsson
and
M.
Åbom
, “
On the use of linear acoustic multiports to predict whistling in confined flows
,”
Acta Acust. Acust.
97
,
24
33
(
2011
).
25.
A. D.
Pierce
,
Acoustics: An Introduction to Its Physical Principles and Applications
(
Acoustical Society of America
,
New York
,
1981
), Chap. 7.
26.
S.
Ziada
,
H.
Ng
, and
C. E.
Blake
, “
Flow excited resonance of a confined shallow cavity in low Mach number flow and its control
,”
J. Fluids Struct.
18
,
79
92
(
2003
).
27.
O.
Marsden
,
E.
Jondeau
,
P.
Souchotte
,
C.
Bogey
,
C.
Bailly
, and
D.
Juvé
,
“Investigation of flow features and acoustic radiation of a round cavity,”
in
14th AIAA/CEAS Aeroacoustics Conference
,
Vancouver, British Columbia
(May 5–7,
2008
), AIAA 2008-2851.
28.
O.
Marsden
,
E.
Jondeau
,
P.
Souchotte
, and
C.
Bailly
,
“Experimental investigation of flow features and acoustic radiation of a round cavity under subsonic grazing flow,”
in
7th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM7)
,
Limassol, Cyprus
(June 4–6,
2008
), pp.
559
562
.
29.
G.
Nakiboğlu
,
S. P. C.
Belfroid
,
J. F. H.
Willems
, and
A.
Hirschberg
, “
Whistling behavior of periodic systems: Corrugated pipes and multiple side branch system
,”
Int. J. Mech. Sci.
52
,
1458
1470
(
2010
).
30.
D.
Tonon
,
B. J. T.
Landry
,
S. P. C.
Belfroid
,
J. F. H.
Willems
,
G.
Hofmans
, and
A.
Hirschberg
, “
Whistling of a pipe system with multiple side branches: Comparison with corrugated pipes
,”
J. Sound Vib.
329
,
1007
1024
(
2010
).
31.
E.
Dokumaci
, “
A note on transmission of sound in a wide pipe with mean flow and viscothermal attenuation
,”
J. Sound Vib.
208
,
653
655
(
1997
).
32.
T.
Sarpkaya
, “
A critical review of the intrinsic nature of vortex-induced vibrations
,”
J. Fluids Struct.
19
,
389
447
(
2004
).
You do not currently have access to this content.