Many odontocetes produce frequency modulated tonal calls known as whistles. The ability to automatically determine time × frequency tracks corresponding to these vocalizations has numerous applications including species description, identification, and density estimation. This work develops and compares two algorithms on a common corpus of nearly one hour of data collected in the Southern California Bight and at Palmyra Atoll. The corpus contains over 3000 whistles from bottlenose dolphins, long- and short-beaked common dolphins, spinner dolphins, and melon-headed whales that have been annotated by a human, and released to the Moby Sound archive. Both algorithms use a common signal processing front end to determine time × frequency peaks from a spectrogram. In the first method, a particle filter performs Bayesian filtering, estimating the contour from the noisy spectral peaks. The second method uses an adaptive polynomial prediction to connect peaks into a graph, merging graphs when they cross. Whistle contours are extracted from graphs using information from both sides of crossings. The particle filter was able to retrieve 71.5% (recall) of the human annotated tonals with 60.8% of the detections being valid (precision). The graph algorithm’s recall rate was 80.0% with a precision of 76.9%.

1.
Adam
,
O.
(
2008
). “
Segmentation of killer whale vocalizations using the Hilbert-Huang transform
,”
EURASIP J. Adv. Signal Process
. doi: .
2.
Arulampalam
,
M. S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T
. (
2002
). “
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
,”
IEEE Trans. Signal Process.
50
(
2
),
174
188
.
3.
Barbarossa
,
S.
,
Scaglione
,
A.
, and
Giannakis
,
G. B.
(
1998
). “
Product high-order ambiguity function for multicomponent polynomial-phase signal modeling
,”
IEEE Trans. Signal Process.
46
(
3
),
691
708
.
4.
Brown
,
J. C.
, and
Miller
,
P. J. O.
(
2007
). “
Automatic classification of killer whale vocalizations using dynamic time warping
,”
J. Acoust. Soc. Am.
122
(
2
),
1201
1207
.
5.
Buck
,
J. R.
, and
Tyack
,
P. L.
(
1993
). “
A quantitative measure of similarity for Tursiops truncatus signature whistles
,”
J. Acoust. Soc. Am.
94
(
5
),
2497
2506
.
6.
Cormen
,
T. H.
,
Leiserson
,
C. E.
, and
Rivest
,
R. L.
(
1990
).
Introduction to Algorithms
(
MIT Press
,
Cambridge, MA
),
p
1028
.
7.
Datta
,
S.
, and
Sturtivant
,
C
. (
2002
). “
Dolphin whistle classification for determining group identities
,”
Signal Processing
82
(
2
),
127
327
.
8.
Dierckx
,
P.
(
1993
).
Curve and Surface Fitting with Splines
(
Oxford Science Publications
,
Oxford
), p.
285
.
9.
Dillon
,
W. R.
, and
Goldstein
,
M.
(
1984
).
Multivariate Analysis, Methods and Applications
(
Wiley
,
New York
), p.
587
.
10.
Doucet
,
A.
,
de Freitas
,
N.
, and
Gordon
,
N.
(
2001
). “
An introduction to sequential Monte Carlo Methods
,” in
Sequential Monte Carlo Methods in Practice
, edited by
A.
Doucet
,
N.
De Freitas
, and
N.
Gordon
(
Springer
,
New York
), p.
581
.
11.
Fisher
,
F. H.
, and
Spiess
,
F. N.
(
1963
). “
FLIP-FLoating Instrument Platform
,”
J. Acoust. Soc. Am.
35
(
10
),
1633
1644
.
12.
Gillespie
,
D.
,
Gordon
,
J.
,
McHugh
,
R.
,
McLaren
,
D.
,
Mellinger
,
D. K.
,
Redmond
,
P.
,
Thode
,
A.
,
Trinder
,
P.
, and
Deng
,
X.-Y.
(
2008
). “
PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localisation of cetaceans
,”
Proc. Inst. Acoustics
.
13.
Gordon
,
N. J.
,
Salmond
,
D. J.
, and
Smith
,
A. F. M.
(
1993
).
Novel-approach to nonlinear non-Gaussian Bayesian state estimation.
IEE Proc. F
140
(
2
),
107
113
.
14.
Halkias
,
X. C.
, and
Ellis
,
D. P. W.
(
2006
). “
Call detection and extraction using Bayesian inference
,”
Appl. Acoust.
67
(
11-12
),
1164
1174
.
15.
Heimlich
,
S.
,
Klinck
,
H.
, and
Mellinger
,
D. K.
(
2011
).
The Moby Sound Database for Research in the Automatic Recognition of Marine Mammal Calls
, http://www.mobysound.org/ (Last viewed on April 1, 2011).
16.
Heyning
,
J. E.
, and
Perrin
,
W. F.
(
1994
). “
Evidence for two species of common dolphins (genus Delphinus) from the eastern North Pacific
,”
Contr. Sci (Los Angeles)
442
,
1
35
.
17.
Ioana
,
C.
,
Gervaise
,
C.
,
Stéphan
,
Y.
, and
Mars
,
J. I.
(
2010
). “
Analysis of underwater mammal vocalizations using time-frequency-phase tracker
,”
Appl. Acoust.
71
(
11
),
1070
1080
.
18.
Kitagawa
,
G
. (
1996
). “
Monte Carlo filter and smoother for non-gaussian nonlinear state space models
,”
J. Comput. Graph. Stat.
5
(
1
),
1
25
.
19.
Lammers
,
M. O.
,
Au
,
W. W. L.
, and
Herzing
,
D. L.
(
2003
). “
The broadband social acoustic signaling behavior of spinner and spotted dolphins
,”
J. Acoust. Soc. Am.
114
(
3
),
1629
1639
.
20.
Mallawaarachchi
,
A.
,
Ong
,
S. H.
,
Chitre
,
M.
, and
Taylor
,
E
. (
2008
). “
Spectrogram denoising and automated extraction of the fundamental frequency variation of dolphin whistles
,”
J. Acoust. Soc. Am.
124
(
2
),
1159
1170
.
21.
Marques
,
T. A.
,
Thomas
,
L.
,
Ward
,
J.
,
DiMarzio
,
N.
, and
Tyack
P. L.
(
2009
). “
Estimating cetacean population density using fixed passive acoustic sensors: An example with Blainville’s beaked whales
,”
J. Acoust. Soc. Am.
125
(
4
),
1982
1994
.
22.
Mellinger
,
D. K.
(
2001
). Ishmael 1.0 User’s Guide. NOAA PMEL, Seattle, OAR-PMEL-120, p.
30
.
23.
Musso
,
C.
,
Oudjane
,
C.
, and
LeGland
,
F.
(
2001
). “
Improving regularized particle filters
,” in
Sequential Monte Carlo Methods in Practice
, edited by
A.
Doucet
,
N.
De Freitas
, and
N.
Gordon
(
Springer
,
New York
), pp.
247
721
.
24.
Nilsson
,
N. J.
(
1980
).
Principles of Artificial Intelligence
(
Tioga
,
Palo Alto, CA
), p.
476
.
25.
Oswald
,
J. N.
,
Barlow
,
J.
, and
Norris
,
T. F.
(
2003
). “
Acoustic identification of nine delphinid species in the eastern tropical Pacific ocean
,”
Mar. Mammal Sci.
19
(
1
),
20
37
.
26.
Oswald
,
J. N.
,
Rankin
,
S.
,
Barlow
,
J.
, and
Lammers
,
M. O.
(
2007
). “
A tool for real-time acoustic species identification of delphinid whistles
,”
J. Acoust. Soc. Am.
122
(
1
),
587
595
.
27.
Papoulis
,
A.
(
1991
).
Probability, Random Vriables, and Stochastic Processes
(
McGraw-Hill
,
New York
), p.
666
.
28.
Press
,
W. H.
(
1992
).
Numerical Recipes in C: the Art of Scientific Computing
(
Cambridge University Press
,
Cambridge
), p.
994
.
29.
Shapiro
,
A. D.
, and
Wang
,
C
. (
2009
). “
A versatile pitch tracking algorithm: From human speech to killer whale vocalizations
,”
J. Acoust. Soc. Am.
126
(
1
),
451
459
.
30.
Shi
,
Y.
, and
Chang
,
E.
(
2003
). “
Spectrogram-based formant tracking via particle filters
,”
Intl. Conf. Acoust., Speech, Signal Proc. (ICASSP)
,
Hong Kong, China
, pp.
I
168
I
171
.
31.
Wang
,
D.
,
Wursig
,
B.
, and
Evans
,
W.
(
1995
). “
Comparisons of whistles among seven odontocete species
,” in
Sensory Systems of Aquatic Mammals
, edited by
R. A.
Kastelein
,
J. A.
Thomas
,
P. E.
Nachtigall
, (
De Spil
,
Woerden, NL
), pp.
299
323
.
32.
Watkins
,
W. A.
(
1967
). “
The harmonic interval: Fact or artifact in spectral analysis of pulse trains
,” in
Symposium on Marine Bio-Acoustics
, edited by
W. N.
Tavolga
(
Pergamon Press
,
New York
), pp.
15
43
.
33.
White
,
P. R.
, and
Hadley
,
M. L.
(
2008
). “
Introduction to particle filters for tracking applications in the passive acoustic monitoring of cetaceans
,”
Can. Acoust.
36
(
1
),
146
152
.
You do not currently have access to this content.