Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibration Green’s functions in the area of interest. This reference Green’s function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismic radar can detect the moving coordinates (x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs.

1.
M.
Fink
, “
Time reversal of ultrasonic fields: basic principles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
555
566
(
1992
).
2.
M.
Fink
, “
Time-reversal mirrors
,”
J. Phys. D
26
,
1333
1360
(
1993
).
3.
A.
Parvulescu
and
C. S.
Clay
, “
Reproducibility of signal transmission in the ocean
,”
Radio Electr. Eng.
29
,
223
228
(
1965
).
4.
W. S.
French
, “
Two-dimensional and three-dimensional migration of model-experiment reflection profiles
,”
Geophysics
39
,
265
277
(
1974
).
5.
G. A.
McMechan
, “
Migration by extrapolation of time dependant boundary values
,”
Geophys. Prospect.
31
,
413
420
(
1983
).
6.
N. D.
Whitmore
, “
Iterative depth migration by backward time propagation
,”
Expanded Abstracts of SEG
,
382
385
(
1983
).
7.
W.
Chang
and
G. A.
McMechan
, “
Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition
,”
Geophysics
51
,
67
84
(
1986
).
8.
W. F.
Chang
and
G. A.
McMechan
, “
3-d acoustic prestack reverse-time migration
,”
Geophys. Prospct.
38
,
737
775
(
1990
).
9.
R.
Sun
and
G. A.
McMechan
, “
Scaler reverse-time depth migration of prestack elastic seismic data
,”
Geophysics
66
,
1519
1527
(
2001
).
10.
B. E.
Anderson
,
M.
Griffa
,
P. L.
Bas
,
T. J.
Ulrich
, and
P. A.
Johnson
, “
Experimental implementation of reverse time migration for nondestructive evaluation applications
,”
J. Acoust. Soc. Am.
129
,
EL8
EL14
(
2011
).
11.
A.
Parvulescu
, “
Matched-signal (“mess”) processing by the ocean
,”
J. Acoust. Soc. Am.
98
,
943
960
(
1995
).
12.
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
Phase conjungation in the ocean: experimental demonstration of an acoustic time- reversal-mirror
,”
J. Acoust. Soc. Am.
103
,
25
40
(
1998
).
13.
H. C.
Song
,
W. A.
Kuperman
, and
W. S.
Hodgkiss
, “
A time-reversal mirror with variable range focusing
,”
J. Acoust. Soc. Am.
103
,
3234
3240
(
1998
).
14.
G. F.
Edelmann
,
H. C.
Song
,
S.
Kim
,
W. S.
Hodgkiss
,
W. A.
Kuperman
, and
T.
Akal
, “
Underwater acoustic communications using time reversal
,”
IEEE J. Oceanic Eng.
30
,
852
864
(
2005
).
15.
J.
de Rosny
and
M.
Fink
, “
Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink
,”
Phys. Rev. Lett.
89
,
124301
(
2002
).
16.
A.
Derode
,
A.
Tourin
,
J.
de Rosny
,
M.
Tanter
,
S.
Ton
, and
M.
Fink
, “
Taking advantage of multiple scattering to communicate with time-reversal antennas
,”
Phys. Rev. Lett.
90
,
014301
(
2003
).
17.
R. K.
Ing
and
N.
Quieffin
, “
In soild localization of finger impacts using acoustic time-reversal process
,”
Appl. Phys. Lett.
87
,
204104
(
2005
).
18.
G.
Lerosey
,
J.
de Rosny
,
A.
Tourin
, and
M.
Fink
, “
Focusing beyond the diffraction limit with far-field time reversal
,”
Science
315
,
1120
1122
(
2007
).
19.
S.
Gaffet
,
T.
Monfret
,
G.
Senechal
,
D.
Rousset
, and
H.
Zeyen
, “
Seismic time reversal experiment in the low noise underground laboratory, LSBB (France)
,”
Geophys. Res. Abstr.
7
, SRef-ID: 1607-7962/gra/EGU05-A-08256 (
2005
).
20.
S.
Hanafy
,
W.
Cao
, and
G.
Schuster
, “
Using super-stacking and super-resolution properties of time-reversal mirrors to locate trapped miners
,”
TLE
28
,
302
307
(
2009
).
21.
I.
Lokmer
,
G. S.
O’Brien
,
D.
Stich
, and
C. J.
Bean
, “
Time reversal imaging of synthetic volcanic tremor sources
,”
Geophys. Res. Lett.
36
,
L12308
(
2009
).
22.
S.
Kaartvedt
,
A.
Rostad
,
T. A.
Klevjer
, and
A.
Staby
, “
Use of bottom-mounted echo sounders in exploring behavior of mesopelagic fishes
,”
Marine Ecol. Prog. Ser.
395
,
109
118
(
2009
).
23.
A.
Derode
,
A.
Tourin
, and
M.
Fink
, “
Ultrasonic pulse compression with one-bit time reversal through multiple scattering
,”
J. Appl. Phys.
85
,
6343
6352
(
1999
).
24.
S.
Yon
,
M.
Tanter
, and
M.
Fink
, “
Sound focusing in rooms: II. The spatio-temporal inverse filter
,”
J. Acoust. Soc. Am.
114
,
3044
3052
(
2003
).
25.
G. T.
Schuster
and
J.
Hu
, “
Greens function for migration: Continuous recording geometry
,”
Geophysics
65
,
167
175
(
2000
).
26.
G. T.
Schuster
,
Seismic Interferometry
(
Cambridge University Press
,
New York
,
2009
), pp.
211
228
.
27.
J.
Chen
and
G. T.
Schuster
, “
Resolution limits of migrated images
,”
Geophysics
64
,
1046
1053
(
1999
).
28.
W.
Cao
,
S. M.
Hanafy
,
G. T.
Schuster
,
G.
Zhan
, and
C.
Boonyasiriwat
, “
High-resolution and super-stacking of time reversal mirrors in locating seismic sources
,” Geophys. Prospect, doi: 10.1111/j.1365-2478.2011.00957.x.
You do not currently have access to this content.