The modification of elastic properties of compressed acoustic foams is investigated. The porous sample is first submitted to a static compression and then to a dynamic excitation of smaller amplitude, corresponding to acoustical applications. The static compression induces the modification of the dynamic elastic parameters of the material. This work focuses on Young’s modulus. The variation is measured with two different experimental methods: The classical rigidimeter and an absorption measurement. The effective Young’s modulus is directly measured with the first method and is indirectly determined through the quarter-wave length resonance of the frame with the second one. The results of the two measurements are compared and give similar tendencies. The variation of the dynamic Young’s modulus as a function of the degree of compression of the sample is shown to be separated in several zones. In the zones associated with weak compression (those usually zones encountered in practice), the variation of the effective Young’s modulus can be approximated by a simple affine function. The results are compared for different foams. A simple model of the dependency of the Young’s modulus with respect to the static degree of compression is finally proposed for weak compressions.

1.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e
, (
Wiley
,
Chichester
,
2009
), Chap. 5.
2.
M. A.
Biot
, “
Theory of propagation of elastic waves in a luid-filled-saturated porous solid
,”
J. Acoust. Soc. Am.
28
,
168
191
(
1956
).
3.
L.
Jaouen
,
A.
Renault
, and
M.
Deverge
, “
Elastic and damping characterizations of acoustical porous materials: Available experimental methods and applications to a melamine foam
,”
Appl. Acoust.
69
,
1129
1140
(
2008
).
4.
T.
Pritz
, “
Dynamic young’s modulus and loss factor of plastic foams for impact sound isolation
,”
J. Sound Vib.
178
,
315
322
(
1994
).
5.
J. L.
Wojtowicki
,
L.
Jaouen
, and
R.
Panneton
, “
A new approach for the measurement of damping properties of materials using the oberst beam
,”
Rev. Sci. Instrum.
75
,
2569
2574
(
2004
).
6.
J. F.
Allard
,
G.
Jansens
,
G.
Vermeir
, and
W.
Lauriks
, “
Frame-borne surface waves in air-saturated porous media
,”
J. Acoust. Soc. Am.
111
,
690
696
(
2002
).
7.
L.
Boeckx
,
P.
Leclaire
,
P.
Khurana
,
C.
Glorieux
,
W.
Lauriks
, and
J. F.
Allard
, “
Investigation of the phase velocities of guided acoustics waves in soft porous layers
,”
J. Acoust. Soc. Am.
117
,
545
554
(
2005
).
8.
L.
Boeckx
,
P.
Leclaire
,
P.
Khurana
,
C.
Glorieux
,
W.
Lauriks
, and
J. F.
Allard
, “
Guided elastic waves in porous materials saturated by air under lamb conditions
,”
J. Appl. Phys.
97
,
094911
1
(
2005
).
9.
S.
Sahraoui
,
E.
Mariez
, and
M.
Etchessahar
, “
Mechanical testing of polymeric foams at low frequency
,”
Polym. Test.
20
,
93
96
(
2001
).
10.
T.
Pritz
, “
Transfer function method for investigating the complex modulus of acoustic materials: spring-like specimen
,”
J. Sound Vib.
72
,
317
341
(
1980
).
11.
T.
Pritz
, “
Transfer function method for investigating the complex modulus of acoustic materials: rod-like specimen
,”
J. Sound Vib.
81
,
359
376
(
1982
).
12.
T.
Pritz
, “
Frequency dependence of frame dynamic characteristics of mineral and glass wool materials
,”
J. Sound Vib.
106
,
161
169
(
1986
).
13.
B.
Castagnéde
,
J.
Tizianel
,
A.
Moussatov
,
A.
Aknine
, and
B.
Brouard
, “
Parametric study of the influence of compression on the acoustical absorption coefficient of automotive felts
,”
C. R. Acad. Sci. Paris
329
,
125
130
(
2001
).
14.
B.
Castagnéde
,
A.
Aknine
,
B.
Brouard
, and
V.
Tarnow
, “
Effects of compression on the sound absorption of fibrous materials
,”
Appl. Acoust.
61
,
173
182
(
2000
).
15.
C. N.
Wang
,
Y. M.
Kuo
, and
S. K.
Chen
, “
Effects of compression on the sound absorption of porous materials with an elastic frame
,”
Appl. Acoust.
69
,
31
39
(
2008
).
16.
L.
Gong
,
S.
Kyriakides
, and
W. Y.
Jang
, “
Compressive response of open-cell foams. I. Morphology and elastic properties
,”
Int. J. Solids Struct.
42
,
1355
1379
(
2005
).
17.
L.
Gong
and
S.
Kyriakides
, “
Compressive response of open cell foams. part II: Initiation and evolution of crushing
,”
Int. J. Solids Struct.
42
,
1381
1399
(
2005
).
18.
N. J.
Mills
and
H. X.
Zhu
, “
The high strain compression of closed-cell polymer foams
,”
J. Mechan. Physics Solids
47
,
669
695
(
1999
).
19.
L.
Jaouen
, “
Contribution to the mechanical characterization of poro-visco-elastic materials
”, Ph.D. thesis,
Universite du Maine
, Le Mans, France,
2003
.
20.
M.
Etchessahar
, “
Low frequency mechanical characterisation of acoustic materials
”, Ph.D. thesis,
Université du Maine
(
2002
).
21.
V.
Tarnow
, “
Dynamic measurements of the elastic constants of glass wool
,”
J. Acoust. Soc. Am.
118
,
3672
3678
(
2005
).
22.
M.
Mariez
,
S.
Sahraoui
, and
J. F.
Allard
, “
Elastic constants of polyurethane foam’s skeleton for biot model
,”
Internoise
96
,
951
954
(
1996
).
23.
J. F.
Allard
,
C.
Depollier
, and
W.
Lauriks
, “
Measurement and prediction of surface impedance at oblique incidence of a plastic foam of high flow resistivity
,”
J. Sound Vib.
132
,
51
60
(
1989
).
24.
M. A.
Biot
, “
Mechanics of deformation and acoustic propagation in porous media
,”
J. Appl. Phys.
33
,
1482
1498
(
1962
).
25.
N.
Atalla
,
R.
Panneton
, and
P.
Debergue
, “
A mixed displacement pressure formulation for poroelastic materials
,”
J. Acoust. Soc. Am.
104
,
1444
1452
(
1998
).
26.
O.
Dazel
,
B.
Brouard
,
C.
Depollier
, and
S.
Griffiths
, “
An alternative biot’s displacement formulation for porous materials
,”
J. Acoust. Soc. Am.
121
,
3509
3516
(
2007
).
27.
P.
Vidmar
, “
The effect of sediment rigidity on bottom reflection loss in a typical deep sea sediment
,”
J. Acoust. Soc. Am.
68
,
634
648
(
1980
).
28.
E. K. W M.
Lai
and
D. H.
Rubin
,
Introduction to Continuum Mechanics
(
Elsevier
,
Oxford
,
2009
), Chap. 5.
29.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
(
Willey
,
New York
,
1961
), Chap. 2.
30.
“Octave”, http://www.gnu.org/software/octave/(Last viewed 10/18/2010).
31.
K.
Shafique
and
M.
Shah
, “
A noniterative greedy algorithm for multiframe point correspondence
,”
IEEE Trans. Pattern Anal. Mach. Intell.
27
,
51
65
(
2005
).
32.
C. A.
Macaluso
and
J. P.
Dalmont
, “
Trumpet with near-perfect harmonicity: Design and acoustic results
,”
J. Acoust. Soc. Am.
129
,
404
414
(
2011
).
33.
J. C.
Leroux
and
J. P.
Dalmont
, “
A new impedance tube for large frequency band characterization of absorbing materials
,” in
SAPEM 2008
(
Bradford
,
2008
).
34.
“Cttm”, http://www.cttm-lemans.com/ (Last viewed 10/18/2010).
35.
L.
Boeckx
, “
Study of the sound field in and above porous materials application to characterization of sound absorbing materials
,” Ph.D. thesis,
KULeuven
, Leuven,
2005
.
36.
L.
Gibson
and
M.
Ashby
,
Cellular Solids: Structure and Properties, Solid State Science Series
(
Cambridge University Press
,
New York
,
1997
), Chaps. 5 and 6.
37.
N.
Dauchez
,
S.
Sahraoui
, and
M.
Etchessahar
, “
One measurement of mechanical properties of sound absorbing material
,” in
Second Biot conference on Poromechanics
(
2002
).
38.
R.
Guastavino
and
P.
Goransson
, “
A 3d displacement measurement methodology for anisotropic porous cellular foam materials
,”
Poly. Test.
26
,
711
719
(
2007
).
You do not currently have access to this content.