The goals of the present study were to measure acoustic temporal modulation transfer functions (TMTFs) in cochlear implant listeners and examine the relationship between modulation detection and speech recognition abilities. The effects of automatic gain control, presentation level and number of channels on modulation detection thresholds (MDTs) were examined using the listeners’ clinical sound processor. The general form of the TMTF was low-pass, consistent with previous studies. The operation of automatic gain control had no effect on MDTs when the stimuli were presented at 65 dBA. MDTs were not dependent on the presentation levels (ranging from 50 to 75 dBA) nor on the number of channels. Significant correlations were found between MDTs and speech recognition scores. The rates of decay of the TMTFs were predictive of speech recognition abilities. Spectral-ripple discrimination was evaluated to examine the relationship between temporal and spectral envelope sensitivities. No correlations were found between the two measures, and 56% of the variance in speech recognition was predicted jointly by the two tasks. The present study suggests that temporal modulation detection measured with the sound processor can serve as a useful measure of the ability of clinical sound processing strategies to deliver clinically pertinent temporal information.

1.
Anderson
,
E. S.
,
Oxenham
,
A. J.
,
Kreft
,
H.
,
Nelson
,
P. B.
, and
Nelson
,
D. A.
(
2011
). “
Comparing spectral tuning curves, spectral ripple resolution, and speech perception in cochlear implant users
,”
J. Acoust. Soc. Am.
(in press).
2.
Bacon
,
S. P.
, and
Viemeister
,
N. F.
(
1985
). “
Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners
,”
Audiology
24
,
117
134
.
3.
Busby
,
P. A.
,
Tong
,
Y. C.
, and
Clark
,
G. M.
(
1993
). “
The perception of temporal modulations by cochlear implant patients
,”
J. Acoust. Soc. Am.
94
,
124
131
.
5.
Carlyon
,
R. P.
,
Deeks
,
J. M.
, and
McKay
,
C. M.
(
2010
). “
The upper limit of temporal pitch for cochlear-implant listeners: Stimulus duration, conditioner pulses, and the number of electrodes stimulated
,”
J. Acoust. Soc. Am.
127
,
1469
1478
.
6.
Cazals
,
Y.
,
Pelizzone
,
M.
,
Saudan
,
O.
, and
Boex
,
C.
(
1994
). “
Low-pass filtering in amplitude modulation detection associated with vowel and consonant identification in subjects with cochlear implants
,”
J. Acoust. Soc. Am.
96
,
2048
2054
.
7.
Chatterjee
,
M.
(
2003
). “
Modulation masking in cochlear implant listeners: Envelope versus tonotopic components
,”
J. Acoust. Soc. Am.
113
,
2042
2053
.
8.
Chatterjee
,
M.
, and
Oba
,
S. I.
(
2004
). “
Across- and within-channel envelope interactions in cochlear implant listeners
,”
J. Assoc. Res. Otolaryngol.
5
,
360
375
.
9.
Chatterjee
,
M.
, and
Yu
,
J.
(
2010
). “
A relation between electrode discrimination and amplitude modulation detection by cochlear implant listeners
,”
J. Acoust. Soc. Am.
127
,
415
426
.
10.
Donaldson
,
G. S.
, and
Viemeister
,
N. F.
(
2000
). “
Intensity discrimination and detection of amplitude modulation in electric hearing
,”
J. Acoust. Soc. Am.
108
,
760
763
.
11.
Eddins
,
D. A.
(
1993
). “
Amplitude modulation detection of narrow-band noise: Effects of absolute bandwidth and frequency region
,”
J. Acoust. Soc. Am.
93
,
470
479
.
12.
Firszt
,
J. B.
(
2003
).
HiResolutionTM Sound Processing
(
Advanced Bionics, LLC
,
Valencia, CA
).
13.
Fu
,
Q. J.
,
Zeng
,
F. G.
,
Shannon
,
R. V.
, and
Soli
,
S. D.
(
1998
). “
Importance of tonal envelope cues in Chinese speech recognition
,”
J. Acoust. Soc. Am.
104
,
505
510
.
14.
Fu
,
Q. J.
, and
Shannon
,
R. V.
(
2000
). “
Effect of stimulation rate on phoneme recognition by nucleus-22 cochlear implant listeners
,”
J. Acoust. Soc. Am.
107
,
589
597
.
15.
Fu
,
Q. J.
, and
Zeng
,
F. G.
(
2000
). “
Identification of temporal envelope cues in Chineses tone recognition
,”
Asia Pac. J. Speech Lang. Hear.
5
,
45
57
.
16.
Fu
,
Q. J.
(
2002
). “
Temporal processing and speech recognition in cochlear implant users
,”
Neuroreport
13
,
1635
1639
.
17.
Fu
,
Q. J.
,
Chinchilla
,
S.
, and
Galvin
,
J. J.
(
2004
). “
The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users
,”
J. Assoc. Res. Otolaryngol.
5
,
253
260
.
18.
Galvin
,
J. J.
, III
, and
Fu
,
Q. J.
(
2005
). “
Effects of stimulation rate, mode and level on modulation detection by cochlear implant users
,”
J. Assoc. Res. Otolaryngol.
6
,
269
279
.
19.
Galvin
,
J. J.
, III
, and
Fu
,
Q. J.
(
2009
). “
Influence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant users
,”
Hear. Res.
250
,
46
54
.
20.
Grose
,
J. H.
Hall
,
J. W.
, and
Gibbs
,
C.
(
1993
). “
Temporal analysis in children
,”
J. Speech. Hear. Res.
36
,
351
356
.
21.
Hall
,
J. W.
, and
Grose
,
J. H.
(
1994
). “
Development of temporal resolution in children as measured by the temporal modulation transfer functions
,”
J. Acoust. Soc. Am.
96
,
150
154
.
22.
Harris
,
R. W.
(
1991
).
Speech Audiometry Materials Compact Disk
(
Brigham Young University
,
Provo, UT
).
45.
Henry
,
B. A.
, and
Turner
,
C. W.
(
2003
). “
The resolution of complex spectral patterns by cochlear implant and normal-hearing listeners
,”
J. Acoust. Soc. Am.
113
,
2861
2873
.
23.
Henry
,
B. A.
,
Turner
,
C. W.
, and
Behrens
,
A.
(
2005
). “
Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners
,”
J. Acoust. Soc. Am.
118
,
1111
1121
.
24.
Levitt
,
H.
(
1971
). “
Transformed up-down methods in psychoacoustics
,”
J. Acoust. Soc. Am.
49
,
467
477
.
46.
Litvak
,
L. M.
,
Spahr
,
A. J.
,
Saoji
,
A. A.
, and
Fridman
,
G. Y.
(
2007
). “
Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners
,”
J. Acoust. Soc. Am.
122
,
982
991
.
25.
Lomax
,
R. G.
(
2005
).
Statistical Concepts: A Second Course
(
Lawrence Erlbaum Associates
,
Mahwah, NJ
).
26.
Luo
,
X.
,
Fu
,
Q. J.
,
Wei
,
C. G.
, and
Cao
,
K. L.
(
2008
). “
Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users
,”
Ear Hear.
29
,
957
970
.
27.
Luo
,
X.
,
Galvin
,
J. J.
, and
Fu
,
Q. J
. (
2010
). “
Effects of stimulus duration on amplitude modulation processing with cochlear implants
,”
J. Acoust. Soc. Am.
127
,
EL23
EL29
.
28.
McKay
,
C. M.
,
Henshall
,
K. R.
, and
Hull
,
A. E.
(
2005
). “
The effect of rate of stimulation on perception of spectral shape by cochlear implantees
,”
J. Acoust. Soc. Am.
118
,
386
392
.
29.
McKay
,
C. M.
, and
Henshall
,
K. R.
(
2010
). “
Amplitude modulation and loudness in cochlear implantees
,”
J. Assoc. Res. Otolaryngol.
11
,
101
111
.
30.
Moore
,
B. C. J.
,
Glasberg
,
B. R.
,
Stone
,
M. A.
(
1991
). “
Optimization of a slow-acting automatic gain control system for us in hearing aids
,”
Br. J. Audiol.
25
,
171
182
.
31.
Peterson
,
G. E.
, and
Lehiste
,
I.
(
1962
). “
Revised CNC lists for auditory tests
,”
J. Speech Hear. Disord.
27
,
62
70
.
32.
Pfingst
,
B. E.
,
Xu
,
L.
, and
Thompson
,
C. S.
(
2007
). “
Effects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implants
,”
J. Acoust. Soc. Am.
121
,
2236
2246
.
33.
Pfingst
,
B. E.
,
Burkholder-Juhasz
,
R. A.
,
Xu
,
L.
, and
Thompson
,
C. S.
(
2008
). “
Across-site patterns of modulation detection in listeners with cochlear implants
,”
J. Acoust. Soc. Am.
123
,
1054
1062
.
34.
Richardson
,
L. M.
,
Busby
,
P. A.
, and
Clark
,
G. M.
(
1998
). “
Modulation detection interference in cochlear implant subjects
,”
J. Acoust. Soc. Am.
104
,
442
452
.
35.
Saoji
,
A. A.
,
Litvak
,
L. M.
,
Spahr
,
A. J.
, and
Eddins
,
D. A.
(
2009
). “
Spectral modulation detection and vowel and consonant identifications in cochlear implant listeners
,”
J. Acoust. Soc. Am.
126
,
955
958
.
36.
Shannon
,
R. V.
(
1992
). “
Temporal modulation transfer functions in patients with cochlear implants
,”
J. Acoust. Soc. Am.
91
,
2156
2164
.
37.
Turner
,
C. W.
,
Gantz
,
B. J.
,
Vidal
,
C.
,
Behrens
,
A.
, and
Henry
,
B. A.
(
2004
). “
Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing
,”
J. Acoust. Soc. Am.
115
,
1729
1735
.
38.
Van Tasell
,
D. J.
,
Soli
,
S. D.
,
Kirby
,
V. M.
, and
Widin
,
G. P.
(
1987
). “
Speech waveform envelope cues for consonant recognition
,”
J. Acoust. Soc. Am.
82
,
1152
1161
.
39.
Viemeister
,
N. F.
(
1979
). “
Temporal modulation transfer functions based upon modulation thresholds
,”
J. Acoust. Soc. Am.
66
,
1364
1380
.
40.
Wei
,
C.
,
Cao
,
K.
,
Jin
,
X.
,
Chen
,
X.
, and
Zeng
,
F. G.
(
2007
). “
Psychophysical performance and Mandarin tone recognition in noise by cochlear implant users
,”
Ear Hear.
28
,
62S
65S
.
41.
Won
,
J. H.
,
Drennan
,
W. R.
, and
Rubinstein
,
J. T.
(
2007
). “
Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users
,”
J. Assoc. Res. Otolaryngol.
8
,
384
392
.
42.
Won
,
J. H.
,
Drennan
,
W. R.
,
Kang
,
R. S.
, and
Rubinstein
,
J. T.
(
2010
). “
Psychoacoustic abilities associated with music perception in cochlear implant users
,”
Ear Hear.
31
,
796
805
.
43.
Xu
,
L.
,
Tsai
,
Y.
, and
Pfingst
,
B. E.
(
2002
). “
Features of stimulation affecting tonal-speech perception: Implications for cochlear prostheses
,”
J. Acoust. Soc. Am.
112
,
247
258
.
44.
Xu
,
L.
,
Thompson
,
C. S.
, and
Pfingst
,
B. E.
(
2005
). “
Relative contributions of spectral and temporal cues for phoneme recognition
,”
J. Acoust. Soc. Am.
117
,
3255
3267
.
You do not currently have access to this content.