Two experiments explored how frequency content impacts sound localization for sounds containing reverberant energy. Virtual sound sources from thirteen lateral angles and four distances were simulated in the frontal horizontal plane using binaural room impulse responses measured in an everyday office. Experiment 1 compared localization judgments for one-octave-wide noise centered at either 750 Hz (low) or 6000 Hz (high). For both band-limited noises, perceived lateral angle varied monotonically with source angle. For frontal sources, perceived locations were similar for low- and high-frequency noise; however, for lateral sources, localization was less accurate for low-frequency noise than for high-frequency noise. With increasing source distance, judgments of both noises became more biased toward the median plane, an effect that was greater for low-frequency noise than for high-frequency noise. In Experiment 2, simultaneous presentation of low- and high-frequency noises yielded performance that was less accurate than that for high-frequency noise, but equal to or better than for low-frequency noise. Results suggest that listeners perceptually weight low-frequency information heavily, even in reverberant conditions where high-frequency stimuli are localized more accurately. These findings show that listeners do not always optimally adjust how localization cues are integrated over frequency in reverberant settings.

1.
Brungart
,
D. S.
,
Durlach
,
N. I.
, and
Rabinowitz
,
W. M.
(
1999
). “
Auditory localization of nearby sources II: Localization of a broadband source in the near field
,”
J. Acoust. Soc. Am.
106
,
1956
1968
.
2.
Brungart
,
D. S.
(
2001
). “
Preliminary model of auditory distance perception for nearby sources
,” in
Computational Models of Auditory Function
, edited by
S.
Greenberg
and
M.
Slaney
(
IOS Press
,
Amsterdam
), pp.
83
95
.
3.
Devore
,
S.
,
Ihlefeld
,
A.
,
Hancock
,
K.
,
Shinn-Cunningham
,
B. G.
, and
Delgutte
,
B.
(
2009
). “
Accurate sound localization in reverberant environments is mediated by robust encoding of spatial cues in the auditory midbrain
,”
Neuron
62
,
123
134
.
4.
Devore
,
S.
, and
Delgutte
,
B.
(
2010
). “
Effects of reverberation on the directional sensitivity of auditory neurons across the tonotopic axis: influences of interaural time and level differences
,”
J. Neurosci.
30
,
7826
7837
.
5.
Faller
,
C.
, and
Merimaa
,
J.
(
2004
). “
Source localization in complex listening situations: Selection of binaural cues based on interaural coherence
,”
J. Acoust. Soc. Am.
116
,
3075
3089
.
6.
Giguère
,
C.
, and
Abel
,
S. M.
(
1993
). “
Sound localization: Effects of reverberation time, speaker array, stimulus frequency, and stimulus rise/decay
,”
J. Acoust. Soc. Am.
94
,
769
776
.
7.
Hartmann
,
W. M.
(
1983
). “
Localization of sound in rooms
,”
J. Acoust. Soc. Am.
74
,
1380
1391
.
8.
Henning
,
G. B.
(
1974
). “
Detectability of interaural delay in high-frequency complex waveforms
,”
J. Acoust. Soc. Am.
55
,
84
90
.
9.
Ihlefeld
,
A.
, and
Shinn-Cunningham
,
B. G.
(
2004
). “
Effect of source locations and listener location on ILD cues in a reverberant room
,”
J. Acoust. Soc. Am.
115
,
2598
.
10.
Jeffress
,
L. A.
(
1972
). “
Binaural signal detection: Vector theory
,” in
Foundations of Modern Auditory Theory
, edited by
J. V.
Tobias
(
Academic Press
,
New York)
, Vol.
II
, pp.
351
368
.
11.
Litovsky
,
R. Y.
,
Colburn
,
H. S.
,
Yost
,
W. A.
, and
Guzman
,
S. J.
(
1999
). “
The precedence effect
,”
J. Acoust. Soc. Am.
106
,
1633
1654
.
12.
Lochner
,
J. P. A.
, and
Burger
,
J. F.
(
1964
). “
The influence of reflections on auditorium acoustics
,”
J. Sound Vibr.
1
,
426
454
.
13.
Macpherson
,
E. A.
, and
Middlebrooks
,
J. C.
(
2002
). “
Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited
,”
J. Acoust. Soc. Am.
111
,
2219
2236
.
14.
McFadden
,
D.
, and
Pasanen
,
E. G.
(
1976
). “
Lateralization at high frequencies based on interaural time differences
,”
J. Acoust. Soc. Am.
59
,
634
639
.
15.
Pralong
,
D.
, and
Carlile
,
S.
(
1996
). “
Generation and validation of auditory space
,” in
Virtual Auditory Space: Generation and Applications
, edited by
S.
Carlile
(
Landes
,
Austin
), pp.
142
147
.
16.
Rakerd
,
B.
, and
Hartmann
,
W. M.
(
1985
). “
Localization of sound in rooms II: The effect of a single reflecting surface
,”
J. Acoust. Soc. Am.
78
,
524
533
.
17.
Rakerd
,
B.
, and
Hartmann
,
W. M.
(
1986
). “
Localization of sound in rooms III: Onset and duration effects
,”
J. Acoust. Soc. Am.
80
,
1695
1706
.
18.
Rakerd
,
B.
, and
Hartmann
,
W. M.
(
2004
). “
Localization of noise in a reverberant environment
,” in
Auditory Signal Processing: Physiology, Psychoacoustics, and Models
, edited by
D.
Pressnitzer
,
A.
de Cheveigné
,
S.
McAdams
, and
L.
Collet
(
Springer Verlag
,
Berlin
), pp.
414
422
.
19.
Rakerd
,
B.
, and
Hartmann
,
W. M.
(
2010
). “
Localization of sound in rooms, V: Binaural coherence and human sensitivity to interaural time differences in noise
,”
J. Acoust. Soc. Am.
128
,
3052
3063
.
20.
Schroeder
,
M. R.
(
1965
). “
New method of measuring reverberation time
,”
J. Acoust. Soc. Am.
37
,
409
412
.
21.
Shinn-Cunningham
,
B. G.
,
Santarelli
,
S. G.
, and
Kopîco
,
N.
(
2000
). “
Tori of confusion: Binaural cues for sources within reach of a listener
,”
J. Acoust. Soc. Am.
107
,
1627
1636
.
22.
Shinn-Cunningham
,
B. G.
, and
Kawakyu
,
K.
(
2003
). “
Neural representation of source direction in reverberant space
,” in
Proceedings of the 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
,
New Pfaltz
,
New York
, pp.
79
82
.
23.
Shinn-Cunningham
,
B. G.
Kopîco
,
N.
, and
Martin
,
T.
(
2005a
). “
Localizing nearby sound sources in a classroom: Binaural room impulse responses
,”
J. Acoust. Soc. Am.
117
,
3100
3115
.
24.
Shinn-Cunningham
,
B. G.
,
Lin
,
I. F.
, and
Streeter
,
T.
(
2005b
). “
Trading directional accuracy for realism
,” in
Proceedings of the Human–Computer Interaction International 2005/1st International Conference on Virtual Reality
, pp.
22
27
.
25.
Stecker
,
G. C.
, and
Hafter
,
E. R.
(
2002
). “
Temporal weighting in sound localization
,”
J. Acoust. Soc. Am.
112
,
1046
1057
.
26.
Strutt
,
J. W.
(
1907
). “
On our perception of sound direction
,”
Philos. Mag.
13
,
214
232
.
27.
Trahiotis
,
C.
, and
Stern
,
R. M.
(
1989
). “
Lateralization of bands of noise: effects of bandwidth and differences of interaural time and intensity
,”
J. Acoust. Soc. Am.
86
,
1285
1293
.
28.
Wallach
,
H.
,
Newman
,
E. B.
, and
Rosenzweig
,
M. R.
(
1949
). “
The precedence effect in sound localization
,”
Am. J. Psychol.
52
,
315
336
.
29.
Wenzel
,
E. M.
,
Arruda
,
M.
,
Kistler
,
D. J.
, and
Wightman
,
F. L.
(
1993
). “
Localization using nonindividualized head-related transfer functions
,”
J. Acoust. Soc. Am.
94
,
111
123
.
30.
Wightman
,
F. L.
, and
Kistler
,
D. J.
(
1992
). “
The dominant role of low-frequency interaural time differences in sound localization
,”
J. Acoust. Soc. Am.
91
,
1648
1661
.
31.
Zahorik
,
P.
(
2002
). “
Assessing auditory distance perception using virtual acoustics
,”
J. Acoust. Soc. Am.
111
,
1832
1846
.
32.
Zhang
,
P. X.
, and
Hartmann
,
W. M.
(
2006
). “
Lateralization of sine tones-interaural time vs phase (L)
,”
J. Acoust. Soc. Am.
120
,
3471
3474
.
You do not currently have access to this content.