This paper presents an imaging method for the localization of the impact point in complex anisotropic structures with diffuse field conditions, using only one passive transducer. The proposed technique is based on the reciprocal time reversal approach (inverse filtering) applied to a number of waveforms stored into a database containing the experimental Green’s function of the structure. Unlike most acoustic emission monitoring systems, the present method exploits the benefits of multiple scattering, mode conversion, and boundaries reflections to achieve the focusing of the source with high resolution. Compared to a standard time reversal approach, the optimal refocusing of the back propagated wave field at the impact point is accomplished through a “virtual” imaging process. The robustness of the inverse filtering technique is experimentally demonstrated on a dissipative stiffened composite panel and the source position can be retrieved with a high level of accuracy in any position of the structure. Its very simple configuration and minimal processing requirements make this method a valid alternative to the conventional imaging Structural Health Monitoring systems for the acoustic emission source localization.

1.
F.
Ciampa
and
M.
Meo
, “
Acoustic emission source localization and velocity determination of the fundamental mode A0 using wavelet analysis and Newton-based optimization technique
,”
Smart Mater. Struct.
19
,
1
14
(
2010
).
2.
F.
Ciampa
and
M.
Meo
, “
Impact detection in anisotropic materials using a time reversal approach
,”
Struct. Health Monitoring
31
, (
2011
).
3.
F.
Ciampa
and
M.
Meo
, “
A new algorithm for acoustic emission localization and flexural group velocity determination in anisotropic structures
,”
Composites Part A
41
(
12
),
1777
1786
(
2010
).
4.
M.
Meo
,
G.
Zumpano
,
M.
Pigott
, and
G.
Marengo
, “
Impact identification on a sandwich plate from wave propagation responses
,”
Compos. Struct.
71
,
302
306
(
2005
).
5.
R.
Weaver
, “
On diffuse waves in solid media
,”
J. Acoust. Soc. Am.
71
(
6
),
1608
1609
(
1982
).
6.
M. J.
Evans
and
P.
Cawley
, “
Measurement and prediction of diffuse fields in structures
,”
J. Acoust. Soc. Am.
106
(
6
),
3348
3361
(
1999
).
7.
O.I.
Lobkis
and
R.
Weaver
, “
On the emergence of the Green’s function in the correlations of a diffuse field
,”
J. Acoust. Soc. Am.
110
(
6
),
3011
3017
(
2001
).
8.
M.
Campillo
and
A.
Paul
, “
Long-range correlations in the diffuse seismic coda
,”
Science
299
,
547
549
(
2003
).
9.
P.
Roux
and
M.
Fink
, “
Green’s function estimation using secondary sources in a shallow water environment
,”
J. Acoust. Soc. Am.
113
,
1406
1416
(
2003
).
10.
A.
Derode
,
E.
Larose
,
M.
Tanter
,
J.
de Rosny
,
A.
Tourin
,
M.
Campillo
, and
M.
Fink
, “
Recovering the Green’s function from field-field correlations in an open scattering medium (L)
,”
J. Acoust. Soc. Am.
113
(
6
),
2973
2976
(
2003
).
11.
A.
Derode
,
Larose
,
M.
Campillo
, and
M.
Fink
, “
How to estimate the Green’s function of a heterogeneous medium between two passive sensors? Application to acoustic waves
,”
Appl. Phys. Lett.
83
,
3054
3056
(
2003
).
12.
R. K.
Ing
,
N.
Quieffin
,
S.
Catheline
, and
M.
Fink
, “
In solid localization of finger impacts using acoustic time-reversal process
,”
Appl. Phys. Lett.
87
,
204104
(
2005
).
13.
S.
Catheline
,
N.
Queffin
,
R. K.
Ing
, and
M.
Fink
, “
Acoustic source localization model using in-skull reverberation and time reversal
,”
Appl. Phys. Lett.
90
,
063902
(
2007
).
14.
K. G.
Sabra
,
A.
Srivastava
,
F. L.
di Scalea
,
I.
Bartoli
,
P.
Rizzo
, and
S.
Conti
, “
Structural health monitoring by extraction of coherent guided waves from diffuse fields
,”
J. Acoust. Soc. Am.
123
(
1
),
EL8
EL13
(
2008
).
15.
G.
Zumpano
and
M.
Meo
, “
A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures—A simulation study
,”
Int. J. Solids Struct.
44
,
3666
3684
(
2007
).
16.
E.
Barbieri
and
M.
Meo
, “
Discriminating linear from nonlinear elastic damage using a nonlinear time reversal DORT method
,”
Int. J. Solids Struct.
47
(
20
),
2639
2652
(
2010
).
17.
E.
Barbieri
and
M.
Meo
, “
Time reversal DORT method applied to nonlinear elastic wave scattering
,”
Wave Motion
47
(
7
),
452
467
(
2010
).
18.
M.
Meo
,
U.
Polimeno
, and
G.
Zumpano
, “
Detecting damage in composite material using nonlinear elastic wave spectroscopy methods
,”
Appl. Compos. Mater.
15
(
3
),
115
126
(
2008
).
19.
G.
Zumpano
and
M.
Meo
, “
Damage localization using transient non-linear elastic wave spectroscopy on composite structures
,”
Int. J. Non-Linear Mech.
43
(
3
),
217
230
(
2008
).
20.
G.
Zumpano
and
M.
Meo
, “
A new damage detection technique based on wave propagation for rails
,”
Int. J. Solids Struct.
43
(
5
),
1023
1046
(
2006
).
21.
M.
Tanter
,
J. L.
Thomas
, and
M.
Fink
, “
Focusing and steering through absorbing and aberrating layers: Application to ultrasonic propagation through the skull
,”
J. Acoust. Soc. Am.
103
(
5
),
2403
2410
(
1998
).
22.
M.
Tanter
,
J. L.
Thomas
, and
M.
Fink
, “
Time reversal and the inverse filter
,”
J. Acoust. Soc. Am.
108
(
1
),
223
234
(
2000
).
23.
C.
Dorme
and
M.
Fink
, “
Focusing in transmit-receive mode through inhomogeneous media: The time reversal matched filter approach
,”
J. Acoust. Soc. Am.
98
(
2
),
1155
1162
(
1995
).
24.
D.
Cassereau
and
M.
Fink
, “
Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity
,”
IEEE Trans. Ultrason. Ferroelectr. Freq.
39
,
579
592
(
1992
).
25.
A.
Derode
,
P.
Roux
, and
M.
Fink
, “
Robust acoustic time reversal with high-order multiple scattering
,”
Phys. Rev. Lett.
75
,
4206
(
1995
).
26.
P.
Blomgren
,
G.
Papanicolaou
,
C.
Tsogka
, and
J.
Berryman
, “
Super-resolution in time-reversal acoustics
,”
J. Acoust. Soc. Am.
111
(
1
),
230
248
(
2002
).
27.
R.
Carminati
,
J. J
Saenz
,
J. J
Greffet
, and
M.
Nieto-Vesperinas
, “
Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components
,”
Phys. Rev. A
62
,
012712
(
2000
).
28.
C.
Draeger
and
M.
Fink
, “
One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity
,”
Phys. Rev. Lett.
79
,
407
410
(
1997
).
29.
A.
Derode
,
A.
Tourin
, and
M.
Fink
, “
Ultrasonic pulse compression with one bit time reversal through multiple scattering
,”
J. Appl. Phys.
85
(
9
),
6343
6352
(
1999
).
30.
H. S.
Tzou
,
Piezoelectric Shells: Distributed Sensing and Control of Continua
(
Kluwer-Academic
,
Dordrecht
,
2003
).
31.
N.
Quieffin
, “
Etude du rayonnement acoustique de structures solides: vers un systeme d’ imagerie haute resolution
,” Ph.D. thesis,
University Paris VI
, Paris,
2004
.
32.
O. I.
Lobkis
and
R. L.
Weaver
, “
Complex modal statistics in a reverberant dissipative body
,”
J. Acoust. Soc. Am.
108
(
4
),
1480
1485
(
2000
).
33.
O.
Bou Matar
,
Y.F.
Li
, and
K.
Van Den Abeele
, “
On the use of a chaotic transducer in nonlinear elastic imaging,”
Appl. Phys. Lett.
84
(
19
),
3879
3881
(
2004
).
You do not currently have access to this content.