An efficient Green’s function solution for acoustic initial value problems in homogeneous media with power law absorption is derived. The solution is based on the homogeneous wave equation for lossless media with two additional terms. These terms are dependent on the fractional Laplacian and separately account for power law absorption and dispersion. Given initial conditions for the pressure and its temporal derivative, the solution allows the pressure field for any time t>0 to be calculated in a single step using the Fourier transform and an exact k-space time propagator. For regularly spaced Cartesian grids, the former can be computed efficiently using the fast Fourier transform. Because no time stepping is required, the solution facilitates the efficient computation of the pressure field in one, two, or three dimensions without stability constraints. Several computational aspects of the solution are discussed, including the effect of using a truncated Fourier series to represent discrete initial conditions, the use of smoothing, and the properties of the encapsulated absorption and dispersion.

1.
J. C.
Bamber
, “
Attenuation and Absorption
,” in
Physical Principles of Medical Ultrasonics
, edited by
C. R.
Hill
,
J. C.
Bamber
, and
G. R.
ter Haar
(
John Wiley
,
Chichester
,
2004
), pp.
93
166
.
2.
M. J.
Buckingham
, “
Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments
,”
J. Acoust. Soc. Am.
102
,
2579
2596
(
1997
).
3.
M. J.
Buckingham
, “
Causality, Stokes’ wave equation, and acoustic pulse propagation in a viscous fluid
,”
Phys. Rev. E
72
,
026610
(
2005
).
4.
B. E.
Treeby
and
B. T.
Cox
, “
Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian
,”
J. Acoust. Soc. Am.
127
,
2741
2748
(
2010
).
5.
T. L.
Szabo
, “
Time domain wave equations for lossy media obeying a frequency power law
,”
J. Acoust. Soc. Am.
96
,
491
500
(
1994
).
6.
M.
Caputo
, “
Linear models of dissipation whose Q is almost frequency independent-II
,”
Geophys. J. Int.
13
,
529
539
(
1967
).
7.
W.
Chen
and
S.
Holm
, “
Modified Szabo’s wave equation models for lossy media obeying frequency power law
,”
J. Acoust. Soc. Am.
114
,
2570
2574
(
2003
).
8.
M.
Liebler
,
S.
Ginter
,
T.
Dreyer
, and
R. E.
Riedlinger
, “
Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation
,”
J. Acoust. Soc. Am.
116
,
2742
2750
(
2004
).
9.
M. G.
Wismer
, “
Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation
,”
J. Acoust. Soc. Am.
120
,
3493
3502
(
2006
).
10.
J. F.
Kelly
,
R. J.
McGough
, and
M. M.
Meerschaert
, “
Analytical time-domain Green’s functions for power-law media
,”
J. Acoust. Soc. Am.
124
,
2861
2872
(
2008
).
11.
W.
Chen
and
S.
Holm
, “
Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
,”
J. Acoust. Soc. Am.
115
,
1424
1430
(
2004
).
12.
G. V.
Norton
and
J. C.
Novarini
, “
Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media
,”
J. Acoust. Soc. Am.
113
,
3024
3031
(
2003
).
13.
G. V.
Norton
and
J. C.
Novarini
, “
Including dispersion and attenuation in time domain modelling of pulse propagation in spatially-varying media
,”
J. Comput. Acoust.
12
,
501
519
(
2004
).
14.
V. M.
Zolotarev
,
One-dimensional Stable Distributions
(
American Mathematical Society
,
Providence
,
1986
), pp.
1
261
.
15.
T. L.
Szabo
, “
The material impulse response for broadband pulses in lossy media
,” in
Proc. IEEE Ultrasonics Symp.
1
,
748
751
.
16.
R. S. C.
Cobbold
,
N. V.
Sushilov
, and
A. C.
Weathermon
, “
Transient propagation in media with classical or power-law loss
,”
J. Acoust. Soc. Am.
116
,
3294
3303
(
2004
).
17.
B. T.
Cox
and
P. C.
Beard
, “
Fast calculation of pulsed photoacoustic fields in fluids using k-space methods
,”
J. Acoust. Soc. Am.
117
,
3616
3627
(
2005
).
18.
B. T.
Cox
and
P. C.
Beard
, “
Modeling photoacoustic propagation in tissue using k-space techniques
,” in
Photoacoustic Imaging and Spectroscopy
, edited by
L. V.
Wang
(
CRC Press
,
Boca Raton
,
2009
), pp.
25
34
.
19.
K. R.
Waters
,
M. S.
Hughes
,
J.
Mobley
,
G. H.
Brandenburger
, and
J. G.
Miller
, “
On the applicability of Kramers-Kronig relations for ultrasonic attenuation obeying a frequency power law
,”
J. Acoust. Soc. Am.
108
,
556
563
(
2000
).
20.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1962
), pp.
183
186
.
21.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton
,
1968
), p.
28
.
22.
N. N.
Bojarski
, “
The k-space formulation of the scattering problem in the time domain
,”
J. Acoust. Soc. Am.
72
,
570
584
(
1982
).
23.
B. E.
Treeby
and
B. T.
Cox
, “
Fast, tissue-realistic models of photoacoustic wave propagation for homogeneous attenuating media
,”
Proc. SPIE
,
7177
,
717716
(
2009
).
24.
Q. H.
Liu
, “
The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
1044
1055
(
1998
).
25.
P.
Stepanishen
and
K.
Benjamin
, “
Forward and backward projection of acoustic fields using FFT methods
,”
J. Acoust. Soc. Am.
71
,
803
(
1982
).
26.
R. E.
Mickens
,
Nonstandard Finite Difference Models of Differential Equations
(
World Scientific
,
Singapore
,
1994
), pp.
166
192
.
27.
T. D.
Mast
,
L. P.
Souriau
,
D. L. D.
Liu
,
M.
Tabei
,
A. I.
Nachman
, and
R. C.
Waag
, “
A k-space method for large-scale models of wave propagation in tissue
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
341
354
(
2001
).
28.
B. E.
Treeby
and
B. T.
Cox
, “
k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields
,”
J. Biomed. Opt.
15
,
021314
(
2010
).
29.
L.
Trefethen
,
Spectral Methods in MATLAB
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2000
), pp.
9
27
.
30.
J. S.
Hesthaven
,
S.
Gottlieb
, and
D.
Gottlieb
,
Spectral Methods for Time-Dependent Problems
(
Cambridge University Press
,
Cambridge
,
2007
), pp.
24
28
.
31.
Z.
Lin
and
L.
Thylén
, “
An analytical derivation of the optimum source patterns for the pseudospectral time-domain method
,”
J. Comput. Phys.
228
,
7375
7387
(
2009
).
32.
T.-W.
Lee
and
S. C.
Hagness
, “
A compact wave source condition for the pseudospectral time-domain method
,”
IEEE Antenn. Wireless Propag. Lett.
3
,
253
256
(
2004
).
33.
J.
Laufer
,
B.
Cox
,
E.
Zhang
, and
P.
Beard
, “
Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme
,”
Appl. Opt.
49
,
1
15
(
2010
).
34.
B. E.
Treeby
,
E. Z.
Zhang
, and
B. T.
Cox
, “
Photoacoustic tomography in absorbing acoustic media using time reversal
,”
Inverse Probl.
26
,
115003
(
2010
).
You do not currently have access to this content.