The acoustic impedance at the diaphragm of an electroacoustic transducer can be varied using a range of basic electrical control strategies, amongst which are electrical shunt circuits. These passive shunt techniques are compared to active acoustic feedback techniques for controlling the acoustic impedance of an electroacoustic transducer. The formulation of feedback-based acoustic impedance control reveals formal analogies with shunt strategies, and highlights an original method for synthesizing electric networks (“shunts”) with positive or negative components, bridging the gap between passive and active acoustic impedance control. This paper describes the theory unifying all these passive and active acoustic impedance control strategies, introducing the concept of electroacoustic absorbers. The equivalence between shunts and active control is first formalized through the introduction of a one-degree-of-freedom acoustic resonator accounting for both electric shunts and acoustic feedbacks. Conversely, electric networks mimicking the performances of active feedback techniques are introduced, identifying shunts with active impedance control. Simulated acoustic performances are presented, with an emphasis on formal analogies between the different control techniques. Examples of electric shunts are proposed for active sound absorption. Experimental assessments are then presented, and the paper concludes with a general discussion on the concept and potential improvements.

1.
P.
Lueg
, “
Process of silencing sound oscillations
,” U.S. patent no US2043416 (
1936
).
2.
H. F.
Olson
and
E. G.
May
, “
Electronic sound absorber
,”
J. Acoust. Soc. Am.
25
,
1130
1136
(
1953
).
3.
M. J. M.
Jessel
and
G.
Mangiante
, “
Active sound absorbers in an air duct
,”
J. Sound Vib.
23
,
383
390
(
1972
).
4.
D.
Guicking
and
E.
Lorenz
, “
An active sound absorber with porous plate
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
106
,
389
392
(
1984
).
5.
C.
Guigou
and
C. R.
Fuller
, “
Adaptive feedforward and feedback methods for active/passive sound radiation control using smart foam
,”
J. Acoust. Soc. Am.
104
,
226
231
(
1998
).
6.
M.
Furstoss
,
D.
Thenail
, and
M. A.
Galland
, “
Surface impedance control for sound absorption: Direct and hybrid passive/active strategies
,”
J. Sound Vib.
203
,
219
236
(
1997
).
7.
D.
Guicking
,
K.
Karcher
, and
M.
Rollwage
, “
Coherent active methods for applications in rooms acoustics
,”
J. Acoust. Soc. Am.
78
,
1426
1434
(
1985
).
8.
O.
Bustamante
and
P.
Nelson
, “
An adaptive controller for the active absorption of sound
,”
J. Acoust. Soc. Am.
91
,
2740
2747
(
1992
).
9.
P.
Darlington
, “
Loudspeaker circuit with means for monitoring the pressure at the speaker diaphragm, means for monitoring the velocity of the speaker diaphragm and a feedback circuit
,” World patent no. WO9703536 (
1997
).
10.
M.
Collet
,
P.
David
, and
M.
Berthillier
, “
Active acoustical impedance using distributed electrodynamical transducers
,”
J. Acoust. Soc. Am.
125
,
882
894
(
2009
).
11.
C. H.
Hansen
,
Understanding Active Noise Cancellation
(
Spon Press
,
London
,
2001
), pp.
69
110
.
12.
R. E.
Werner
, “
Loudspeakers and negative impedances
,”,
IRE Trans. Audio
6
,
83
89
(
1958
).
13.
E.
De Boer
, “
Theory of motional feedback
,”
IRE Trans. Audio
9
,
15
21
(
1961
).
14.
S. A.
Lane
and
R. L.
Clark
, “
Improving loudspeaker performance for active noise control applications
,”
J. Audio Eng. Soc.
46
,
508
519
(
1998
).
15.
R. J.
Bobber
, “
An active transducer as a characteristic impedance of an acoustic trans mission line
,”
J. Acoust. Soc. Am.
48
,
317
324
(
1970
).
16.
S. J.
Elliott
,
P.
Joseph
,
P. A.
Nelson
, and
M. E.
Johnson
, “
Power output minimization and power absorption in the active control of sound
,”
J. Acoust. Soc. Am.
90
,
2501
2512
(
1991
).
17.
A. J.
Fleming
,
D.
Niederberger
,
S. O. R.
Moheimani
, and
M.
Morari
, “
Control of resonant acoustic sound fields by electrical shunting of a loudspeaker
,”
IEEE Trans. Control Syst. Technol.
15
,
689
703
(
2007
).
18.
H.
Lissek
, “
Les materiaux actifs a proprietes acoustiques variables (Active materials with variable acoustic properties)
,” Ph.d. dissertation,
Universite du Maine
(
2002
).
19.
H.
Lissek
and
X.
Meynial
, “
A preliminary study of an isodynamic transducer for use in active acoustic materials
,”
Appl. Acoust.
64
,
917
930
(
2003
).
20.
X.
Meynial
, “
Active Acoustic Impedance Control Device
,” World patent no. WO9959377 (
1999
).
21.
T.
Sluka
,
P.
Mokry
, and
H.
Lissek
, “
A theory of sound transmission through a clamped curved piezoelectric membrane connected to a negative capacitor
,”
Int. J. Solids Struct.
47
,
2260
2267
(
2010
).
22.
M.
Rossi
,
Audio
(
Presses Polytechniques et Universitaires Romandes
,
Lau sane
,
2007
), pp.
533
555
.
23.
W. S.
Levine
,
The Control Handbook
(
Chemical Rubber Company Press
,
Boca Raton, FL
,
1996
), pp.
131
135
.
24.
W.
Klippel
, “
Tutorial: Loudspeaker nonlinearities. Causes, parameters, symptoms
,”
J. Audio Eng. Soc
54
,
907
939
(
2006
).
25.
R.
Ravaud
,
G.
Lemarquand
, and
T.
Roussel
, “
Time-varying non linear modeling of electrodynamic loudspeakers
,”
Appl. Acoust.
70
,
450
458
(
2009
).
26.
ISO 10534-2-1998
:
Acoustics Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes. Part 2: Transfer-function Method
(
ISO
,
Geneva, Switzerland
,
1998
).
27.
ISO 5136-2003
:
Acoustics—Determination of Sound Power Radiated into a Duct by Fans and Other Air-moving Devices—In-duct Method
(
ISO
,
Geneva, Switzerland
,
2003
).
28.
P.
Nelson
and
S.
Elliott
,
Active Control of Sound
(
Academic Press
,
London
,
1993
), pp.
211
214
.
29.
R.
,
Boulandet
and
H.
Lissek
, “
Optimization of electroacoustic absorbers by means of designed experiments
,”
Appl. Acoust.
71
,
830
842
(
2010
).
You do not currently have access to this content.