Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

1.
ISO 9613-2:
Acoustics—Attenuation of Sound During Propagation Outdoors—Part 2: General Method of Calculation
(
International Standard Organisation
,
Geneva, Switzerland
1996
).
2.
J.
Kragh
and
B.
Plovsing
, Nord2000. “
Comprehensive Outdoor Sound Propagation Model
,” Part I-II. DELTA Acoustics & Vibration Report 1849-1851/00,
2000
(revised December 31, 2001).
3.
Harmonoise WP 3 Engineering method for road traffic and railway noise after validation and fine-tuning, Technical Report HAR32TR-040922-DGMR20 (2005), http://www.imagine-project.org/bestanden/D18_WP3_HAR32TR- 040922-DGMR20.pdf (Last viewed 2/28/11).
4.
NORDTEST ACOU 104. Ground surfaces: determination of acoustic impedance,
1998
. www.nordicinnovation.net/nordtestfiler/acou104.pdf (Last viewed 2/28/11).
5.
ANSI/ASA S1.18-2010:
American National Standard Method for Determining the Acoustic Impedance of Ground Surfaces
(revision of S1.18-1998).
6.
M.
Delany
, and
E. N.
Bazley
, “
Acoustical properties of fibrous absorbent materials
,” Appl. Acoust.
3
,
105
116
(
1970
).
7.
K.
Attenborough
and
I.
Ver
, in
Noise and Vibration Control Engineering
, 3rd ed. edited by
I. L.
Ver
and
L. L.
Beranek
(
New York
,
2008
), Chap. 8.
8.
M. C.
Berengier
,
M.
Stinson
,
G. A.
Daigle
, and
J.-F.
Hamet
, “
Porous road pavements: Acoustical characterization and propagation effects
,”
J. Acoust. Soc. Am
.
101
,
155
162
(
1997
).
9.
K.
Attenborough
,
K. M.
Li
, and
K.
Horoshenkov
, in
Predicting Outdoor Sound
, (
Taylor and Francis
,
London, UK
,
2007
), Chaps. 2, 3, 10, and 11.
10.
G.
Taraldsen
, “
The Delany–Bazley impedance model and Darcy’s Law
,”
Acust. Acta Acust
.
91
,
41
50
(
2005
).
11.
G.
Taraldsen
and
H.
Jonasson
, “
Aspects of ground effect modeling
,”
J. Acoust. Soc. Am
.
129
,
47
53
(
2011
).
12.
Y.
Champoux
and
M. R.
Stinson
, “
On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors
,”
J. Acoust. Soc. Am
.
92
,
1120
1131
(
1992
).
13.
M. A.
Biot
, “
Theory of elastic waves in a fluid-saturated porous solid. II High-frequency range
,”
J. Acoust. Soc. Am
.
28
,
168
178
(
1956
).
14.
D. K.
Wilson
, “
Relaxation-matched modeling of propagation through porous media including fractal pore structure
,”
J. Acoust. Soc. Am
.
94
,
1136
1145
(
1993
).
15.
D. K.
Wilson
, “
Simple relaxational models for the acoustical properties of porous media
,”
Appl. Acoust
.
50
,
171
188
(
1997
).
16.
R.
Raspet
and
J. M.
Sabatier
, “
The surface impedance of grounds with exponential porosity profiles
,”
J. Acoust. Soc. Am
.
99
(
1
),
147
152
(
1996
).
17.
J.-F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media
, 2nd ed. (
Wiley, Chichester
,
UK
,
2009
), pp.
74
76
.
18.
See supplemental material at http://dx.doi.org/10.1121/1.3569740 Document No. E-JASMAN-128-023105 for the corresponding SINTEF report.
19.
K.
Attenborough
,
P.
Boulanger
,
Q.
Qin
, and
R.
Jones
, “
Predicted influence of ballast and porous concrete on rail noise
,” in
Proceedings of the InterNoise
,
Rio de Janeiro
,
Brazil
, Paper In 05–1583- (
2005
).
20.
K.
Heutschi
, “
Sound propagation over ballast surfaces
,”
Acust. Acta Acust
.
95
,
2006
2012
(
2009
).
21.
K. M.
Li
,
T.
Waters-Fuller
, and
K.
Attenborough
, “
Sound propagation from a point source over extended-reaction ground
,”
J. Acoust. Soc. Am
.
104
,
679
685
(
1998
).
22.
V. E.
Ostashev
,
S. L.
Collier
, and
D. K.
Wilson
, “
Padé approximation in time-domain boundary conditions of porous surfaces
,”
J. Acoust. Soc. Am
.
122
(
1
),
107
112
(
2007
).
23.
D. K.
Wilson
,
V. E.
Ostashev
, and
S. L.
Collier
, “
Time-domain equations for sound propagation in rigid-frame porous media (L)
,”
J. Acoust. Soc. Am
.
116
(
4
),
1889
1892
(
2004
).
You do not currently have access to this content.