A numerical vibroacoustic model that can manage multilayered plates locally covered with damping patches is presented. All the layers can have an on-axis orthotropic viscoelastic behavior. Continuity of displacements and transverse shear stresses at each interface is enforced, which permits to write the entire displacement field in function of the displacements of the—common—first layer, leading to a two-dimensional plate model. The problem is then discretized by Rayleigh–Ritz’s method using a trigonometric basis that includes both sine and cosine functions in order to treat various boundary conditions. The excitation can be of mechanical kind (concentrated or distributed forces) or of acoustic kind (plane wave of any incidence, diffuse field, etc.). The model permits to compute different vibroacoustic indicators: the mean square velocity of the plate, the radiation efficiency, and the transmission loss. Comparisons between the present model and numerical results from literature or finite element computations show that the model gives good results in both mechanical and acoustical aspects. Then, a comparison of the effects of different distributions of patches is presented. The role of the surface covering rate is first discussed, followed by a study involving different geometries for the same surface covering rate.

1.
M. D.
Rao
, “
Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes
,”
J. Sound Vib.
262
,
457
474
(
2003
).
2.
E. M.
Kerwin
, “
Damping of flexural waves by a constrained viscoelastic layer
,”
J. Acoust. Soc. Am.
31
,
952
962
(
1959
).
3.
R. A.
Di Taranto
, “
Theory of vibratory bending for elastic and viscoelastic layered finite–length beams
,”
J. Appl. Mech.
32
,
881
886
(
1965
).
4.
D. J.
Mead
and
S.
Markus
, “
The forced vibration of a three–layer, damped sandwich beam with arbitrary boundary conditions
,”
J. Sound Vib.
10
,
163
175
(
1969
).
5.
M. C.
Gomperts
, “
Radiation from rigidly baffled rectangular panels with general boundary conditions
,”
Acustica
30
,
320
327
(
1974
).
6.
A.
Berry
, “
A general formulation for the sound radiation from rectangular, baffled plates with arbitrary boundary conditions
,”
J. Acoust. Soc. Am.
88
,
2792
2802
(
1990
).
7.
E.
Reissner
, “
On the theory of bending of elastic plates
,”
J. Math. Phys.
23
,
184
191
(
1944
).
8.
R. D.
Mindlin
, “
Influence of rotary inertia and shear on flexural motion of isotropic, elastic plates
,”
J. Appl. Mech.
18
,
31
38
(
1951
).
9.
J. N.
Reddy
, “
A simple higher order theory for laminated composite plates
,”
J. Appl. Mech.
51
,
745
752
(
1984
).
10.
J. N.
Reddy
, “
Layerwise theory and variable kinematic models
,” in
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
(
Taylor & Francis/CRC Press
,
Boca Raton, FL
,
2004
), pp.
725
753
.
11.
C. T.
Sun
and
J. M.
Whitney
, “
Theories for the dynamic response of laminated plates
,”
AIAA J.
11
,
178
183
(
1973
).
12.
R.
Srinivas
, “
A refined analysis of composite laminates
,”
J. Sound Vib.
30
,
495
507
(
1973
).
13.
J. L.
Guyader
and
C.
Lesueur
, “
Acoustic transmission through orthotropic multilayered plates. Part I: Plate vibration modes
,”
J. Sound Vib.
58
,
51
68
(
1978
).
14.
J. L.
Guyader
and
C.
Lesueur
, “
Acoustic transmission through orthotropic multilayered plates. Part II: Transmission Loss
,”
J. Sound Vib.
58
,
69
86
(
1978
).
15.
J. L.
Guyader
, “
Transparence acoustique de plaques multicouches, orthotropes, viscoélastiques, finies
” (Acoustic transparency of finite viscoelastic orthotropic multilayered plates), Ph.D. thesis, Institut National des Sciences Appliquées de Lyon, Lyon, France,
1977
.
16.
R. L.
Woodcock
and
J.
Nicolas
, “
A generalized model for predicting the sound transmission properties of generally orthotropic plates with arbitrary boundary conditions
,”
J. Acoust. Soc. Am.
97
,
1099
1112
(
1994
).
17.
R. L.
Woodcock
,
R. M.
Bhat
, and
I. G.
Stiharu
, “
Effect of ply orientation on the in–plane vibration of single–layer composite plates
,”
J. Sound Vib.
312
,
94
108
(
2007
).
18.
R. L.
Woodcock
, “
Free vibration of advanced anisotropic multilayered composites with arbitrary boundary condtions
,”
J. Sound Vib.
312
,
769
788
(
2008
).
19.
F.
Letourneaux
, “
Comportement vibroacoustique de systèmes de grandes dimensions excités par des sources aéroacoustiques: Application aux trains grandes vitesses
” (Vibroacoustic behaviour of large structures excited by aeroacoustic sources: Specific application to high speed trains), Ph.D. thesis, Institut National des Sciences Appliquées de Lyon, Lyon, France,
1996
.
20.
O.
Beslin
and
J.
Nicolas
, “
A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions
,”
J. Sound Vib.
202
,
633
655
(
1997
).
21.
J. H.
Ginsberg
,
Mechanical and Structural Vibrations: Theory and Applications
(
Wiley
,
New York
,
2001
), pp.
677
684
.
22.
C.
Lesueur
, “
Rayonnement acoustique des structures
” (
Acoustic radiation of structures
), (
Eyrolles
,
Paris, France
,
1988
), pp.
183
230
.
23.
O.
Foin
,
J.
Nicolas
, and
N.
Atalla
, “
An efficient tool for predicting the structural acoustic and vibration response of sandwich plates in light or heavy fluid
,”
Appl. Acoust.
57
,
213
242
(
1999
).
24.
B. E.
Sandman
, “
Motion of a three–layered elastic–viscoelastic plate under fluid loading
,”
J. Acoust. Soc. Am.
57
,
1097
1107
(
1975
).
25.
H.
Nelisse
,
O.
Beslin
, and
J.
Nicolas
, “
Fluid–structure coupling for an unbaffled elastic panel immersed in a diffuse field
,”
J. Sound Vib.
198
,
485
506
(
1996
).
You do not currently have access to this content.