Classical long wavelength approximate solutions to the scattering of acoustic waves by a spherical liquid particle suspended in a liquid (an emulsion) show small but significant differences from full solutions at very low kca (typically kca < 0.01) and above at kca > 0.1, where kc is the compressional wavenumber and a the particle radius. These differences may be significant in the context of dispersed particle size estimates based on compression wave attenuation measurements. This paper gives an explanation of how these differences arise from approximations based on the significance of terms in the modulus of the complex zero-order partial wave coefficient, A0. It is proposed that a more accurate approximation results from considering the terms in the real and imaginary parts of the coefficient, separately.

1.
J. W. S.
Strutt
(Baron Rayleigh),
The Theory of Sound
, Reprint of 1894 2nd ed. (
Dover Publications
,
New York
,
1945
), Chap. XVII, pp.
272
284
.
2.
P. S.
Epstein
and
R. R.
Carhart
, “
The absorption of sound in suspensions and emulsions. I. Water fog in air
,”
J. Acoust. Soc. Am
.
25
(
3
),
553
565
(
1953
).
3.
J. R.
Allegra
and
S. A.
Hawley
, “
Attenuation of sound in suspensions and emulsions: Theory and experiments
,”
J. Acoust. Soc. Am
.
51
,
1545
1564
(
1972
).
4.
C. F.
Ying
and
R.
Truell
, “
Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid
,”
J. Appl. Phys
.
27
,
1086
1097
(
1956
).
5.
R. E.
Challis
,
J. S.
Tebbutt
, and
A. K.
Holmes
, “
Equivalence between three scattering formulations for ultrasonic wave propagation in particulate mixtures
,”
J. Phys. D: Appl. Phys
.
31
(
24
),
3481
3497
(
1998
).
6.
R. E.
Challis
,
M. J. W.
Povey
,
M. L.
Mather
, and
A. K.
Holmes
, “
Ultrasound techniques for characterizing colloidal dispersions
,”
Rep. Prog. Phys
.
68
(
7
),
1541
1637
(
2005
).
7.
M. A.
Isakovich
, “
*O rasprostranenii zvuka v emulsiyakh (On sound propagation in emulsions
”),
Zh. Eksp. Teor. Fiz
.
18
(
10
),
907
912
(
1948
).
8.
Y.
Hemar
,
N.
Herrmann
,
P.
Lemarechal
,
R.
Hocquart
, and
F.
Lequeux
, “
Effective medium model for ultrasonic attenuation due to the thermo-elastic effect in concentrated emulsions
,”
J. Phys. II France
7
,
637
647
(
1997
).
9.
D. J.
McClements
,
Y.
Hemar
, and
N.
Herrmann
, “
Incorporation of thermal overlap effects into multiple scattering theory
,”
J. Acoust. Soc. Am
.
105
(
2
),
915
918
(
1999
).
10.
O. G.
Harlen
,
M. J.
Holmes
,
M. J. W.
Povey
,
Y.
Qiu
, and
B. D.
Sleeman
, “
A low frequency potential scattering description of acoustic propagation in dispersions
,”
SIAM J. Appl. Math
.
61
(
6
),
1906
1931
(
2001
).
11.
O. G.
Harlen
,
M. J.
Holmes
,
M. J. W.
Povey
, and
B. D.
Sleeman
, “
Acoustic propagation in dispersions and the geometric theory of diffraction
,”
SIAM J. Appl. Math
.
63
(
3
),
834
849
(
2003
).
12.
V. J.
Pinfield
,
O. G.
Harlen
,
M. J. W.
Povey
, and
B. D.
Sleeman
, “
Acoustic propagation in dispersions in the long wavelength limit
,”
SIAM J. Appl. Math
.
66
(
2
),
489
509
(
2006
).
13.
V. J.
Pinfield
and
M. J. W.
Povey
, “
A perturbation approach to acoustic scattering in dispersions
,”
J. Acoust. Soc. Am
.
120
(
2
),
719
732
(
2006
).
14.
O. G.
Harlen
,
M. J.
Holmes
,
V. J.
Pinfield
,
M. J. W.
Povey
, and
B. D.
Sleeman
, “
A perturbation solution for long wavelength thermoacoustic propagation in dispersions
,”
J. Comput. Appl. Math
.
234
(
6
),
1996
2002
(
2010
).
15.
V. J.
Pinfield
, “
Acoustic scattering in dispersions: Improvements in the calculation of single particle scattering coefficients
,”
J. Acoust. Soc. Am
.
122
(
1
),
205
221
(
2007
).
16.
N.
Herrmann
,
P.
Boltenhagen
, and
P.
Lemarechal
, “
Experimental study of sound attenuation in quasi-monodisperse emulsions
,”
J. Phys. II France
6
,
1389
1403
(
1996
).
17.
P.
Lloyd
and
M. V.
Berry
, “
Wave propagation through an assembly of spheres: IV. Relations between different multiple scattering theories
,”
Proc. Phy. Soc. London
91
,
678
688
(
1967
).
18.
MAPLE, Version 13.02 (
Waterloo-Maple Inc.
, Waterloo, Canada
2009
).
19.
D. J.
McClements
and
M. J. W.
Povey
, “
Scattering of ultrasound by emulsions
,”
J. Phys. D: Appl. Phys
.
22
,
38
47
(
1989
).
You do not currently have access to this content.