This paper examines an updated version of a lumped mucosal wave model of the vocal fold oscillation during phonation. Threshold values of the subglottal pressure and the mean (DC) glottal airflow for the oscillation onset are determined. Depending on the nonlinear characteristics of the model, an oscillation hysteresis phenomenon may occur, with different values for the oscillation onset and offset threshold. The threshold values depend on the oscillation frequency, but the occurrence of the hysteresis is independent of it. The results are tested against pressure data collected from a mechanical replica of the vocal folds, and oral airflow data collected from speakers producing intervocalic /h/. In the human speech data, observed differences between voice onset and offset may be attributed to variations in voice pitch, with a very small or inexistent hysteresis phenomenon.

1.
Amador
,
A.
, and
Mindlin
,
G. B.
(
2008
). “
Beyond harmonic sounds in a simple model for birdsong production
,”
Chaos
18
,
043123
.
2.
Ananthkrishnan
,
N.
,
Sudhakar
,
K.
,
Sudershan
,
S.
, and
Agarwal
,
A.
(
1998
). “
Application of secondary bifurcations to large amplitude limit cycles in mechanical systems
,”
J. Sound Vib.
215
,
183
188
.
3.
Appleton
,
E. V.
, and
van der Pol
,
B.
(
1922
). “
On a type of oscillation-hysteresis in a simple triode generator
,”
Philos. Mag.
43
,
177
193
.
4.
Arneodo
,
E. M.
, and
Mindlin
,
G. B.
(
2009
). “
Source-tract coupling in birdsong production
,”
Phys. Rev. E
79
,
061921
.
5.
Avanzini
,
F.
(
2008
). “
Simulation of vocal fold oscillation with a pseudo-one-mass physical model
,”
Speech Commun.
50
,
95
108
.
6.
Berry
,
D. A.
,
Herzel
,
H.
,
Titze
,
I. R.
, and
Story
,
B. H.
(
1996
). “
Bifurcations in excised larynx experiments
,”
J. Voice
10
,
129
138
.
7.
Chan
,
R. W.
, and
Titze
,
I. R.
(
2006
). “
Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics
,”
J. Acoust. Soc. Am.
119
,
2351
2362
.
8.
Chan
,
R. W.
,
Titze
,
I. R.
, and
Titze
,
M. R.
(
1997
). “
Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
101
,
3722
3727
.
9.
Drioli
,
C.
(
2005
). “
A flow waveform-matched low-dimensional glottal model based on physical knowledge
,”
J. Acoust. Soc. Am.
117
,
3184
3195
.
10.
Fisher
,
K. V.
, and
Swank
,
P. R.
(
1997
). “
Estimating phonation threshold pressure
,”
J. Speech Lang. Hear. Res.
40
,
1122
1129
.
11.
Ford
,
N. J.
, and
Lumb
,
P. M.
(
2009
). “
Mixed-type functional differential equations: A numerical approach
,”
J. Comput. Appl. Math.
229
,
471
479
.
12.
Fulcher
,
L. P.
,
Scherer
,
R. C.
,
Melnykov
,
A.
,
Gateva
,
V.
, and
Limes
,
M. E.
(
2006
). “
Negative coulomb damping, limit cycles, and self-oscillation of the vocal folds
,”
Am. J. Phys.
74
,
386
393
.
13.
Garrel
,
R.
,
Scherer
,
R.
,
Nicollas
,
R.
,
Giovanni
,
A.
, and
Ouaknine
,
M.
(
2008
). “
Using the relaxation oscillations principle for simple phonation modeling
,”
J. Voice
22
,
385
398
.
14.
Hirose
,
H.
, and
Niimi
,
S.
(
1987
). “
The relationship between glottal opening and the transglottal pressure differences during consonant production
,” in
Laryngeal Function in Phonation and Respiration
, edited by
T.
Baer
,
C.
Sasaki
, and
K. S.
Harris
(
College-Hill Press
,
Boston, MA
), pp.
381
390
.
15.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
(
1972
). “
Synthesis of voiced sounds from a two-mass model of the vocal folds
,”
Bell Syst. Tech. J.
51
,
1233
1268
.
16.
Jiang
,
J. J.
, and
Tao
,
C.
(
2007
). “
The minimum glottal airflow to initiate vocal fold oscillation
,”
J. Acoust. Soc. Am.
121
,
2873
2881
.
17.
Koenig
,
L. L.
,
Mencl
,
W. E.
, and
Lucero
,
J. C.
(
2005
). “
Multidimensional analyses of voicing offsets and onsets in female speakers
,”
J. Acoust. Soc. Am.
118
,
2535
2550
.
18.
Laje
,
R.
,
Gardner
,
T.
, and
Mindlin
,
G. B.
(
2001
). “
Continuous model for vocal fold oscillations to study the effect of feedback
,”
Phys. Rev. E
64
,
056201
.
19.
Laje
,
R.
,
Gardner
,
T. J.
, and
Mindlin
,
G. B.
(
2002
). “
Neuromuscular control of vocalizations in birdsong: A model
,”
Phys. Rev. E
65
,
288102
.
20.
Laje
,
R.
, and
Mindlin
,
G. B.
(
2005
). “
Modeling source-source and source-filter acoustic interaction in birdsong
,”
Phys. Rev. E
72
,
036218
.
21.
Lisker
,
L.
,
Abramson
,
A. S.
,
Cooper
,
F. S.
, and
Schvey
,
M. H.
(
1969
). “
Transillumination of the larynx in running speech
,”
J. Acoust. Soc. Am.
45
,
1544
1546
.
22.
Löfqvist
,
A.
, and
Yoshioka
,
H.
(
1981
). “
Interarticulator programming in obstruent production
,”
Phonetica
38
,
21
34
.
23.
Löfqvist
,
A.
, and
Yoshioka
,
H.
(
1984
). “
Intrasegmental timing: Laryngeal-oral coordination in voiceless consonant production
,”
Speech Commun.
3
,
279
289
.
24.
Lucero
,
J. C.
(
1995
). “
The minimum lung pressure to sustain vocal fold oscillation
,”
J. Acoust. Soc. Am.
98
,
779
784
.
25.
Lucero
,
J. C.
(
1999
). “
Theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset
,”
J. Acoust. Soc. Am.
105
,
423
431
.
26.
Lucero
,
J. C.
(
2005
). “
Bifurcations and limit cycles in a model for a vocal fold oscillator
,”
Commun. Math. Sci.
3
,
517
529
.
27.
Lucero
,
J. C.
,
Hirtum
,
A. V.
,
Ruty
,
N.
,
Cisonni
,
J.
, and
Pelorson
,
X.
(
2009
). “
Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica
,”
J. Acoust. Soc. Am.
125
,
632
635
.
28.
Lucero
,
J. C.
, and
Koenig
,
L. L.
(
2005
). “
Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control
,”
J. Acoust. Soc. Am.
117
,
1362
1372
.
29.
Lucero
,
J. C.
, and
Koenig
,
L. L.
(
2007
). “
On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds
,”
J. Acoust. Soc. Am.
121
,
3280
3283
.
30.
MacDonald
,
N.
(
1993
). “
Choices in the harmonic balance technique
,”
J. Phys. A
26
,
6367
6377
.
31.
Mickens
,
R. E.
(
1996
).
Oscillations in Planar Dynamic Systems
(
World Scientific
,
Singapore
), pp.
139
173
.
32.
Plant
,
R. L.
,
Freed
,
G. L.
, and
Plant
,
R. E.
(
2004
). “
Direct measurement of onset and offset phonation threshold pressure in normal subjects
,”
J. Acoust. Soc. Am.
116
,
3640
3646
.
33.
Regner
,
M. F.
,
Tao
,
C.
,
Zhuang
,
P.
, and
Jiang
,
J. J.
(
2008
). “
Onset and offset phonation threshold flow in excised canine larynges
,”
Laryngoscope
118
,
1313
1317
.
34.
Ruty
,
N.
,
Pelorson
,
X.
,
Hirtum
,
A. V.
,
Lopez-Arteaga
,
I.
, and
Hirschberg
,
A.
(
2007
). “
An in vitro setup to test the relevance and the accuracy of low-order vocal folds models
,”
J. Acoust. Soc. Am.
121
,
479
490
.
35.
Sitt
,
J. D.
,
Amador
,
A.
,
Goller
,
F.
, and
Mindlin
,
G. B.
(
2008
). “
Dynamical origin of spectrally rich vocalizations in birdsong
,”
Phys. Rev. E
78
,
011905
.
36.
Strogatz
,
S. H.
(
1994
).
Nonlinear Dynamics and Chaos
(
Perseus Books
,
Cambridge, MA
), pp.
211
215
.
37.
Tao
,
C.
, and
Jiang
,
J. J.
(
2008
). “
The phonation critical condition in rectangular glottis with wide prephonatory gaps
,”
J. Acoust. Soc. Am.
123
,
1637
1641
.
38.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
.
39.
Titze
,
I. R.
(
1992
). “
Phonation threshold pressure: A missing link in glottal aerodynamics
,”
J. Acoust. Soc. Am.
91
,
2926
2935
.
40.
Titze
,
I. R.
,
Jiang
,
J. J.
, and
Hsiao
,
T. Y.
(
1993
). “
Measurement of mucosal wave-propagation and vertical phase difference in vocal fold vibration
,”
Ann. Otol. Rhinol. Laryngol.
102
,
58
63
.
41.
Titze
,
I. R.
,
Schmidt
,
S. S.
, and
Titze
,
M. R.
(
1995
). “
Phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
97
,
3080
3084
.
42.
Verdolini
,
K.
,
Min
,
Y.
,
Titze
,
I. R.
,
Lemke
,
J.
,
Brown
,
K.
,
van Mersbergen
,
M.
,
Jiang
,
J.
, and
Fisher
,
K.
(
2002
). “
Biological mechanisms underlying voice changes due to dehydration
,”
J. Speech Lang. Hear. Res.
45
,
268
281
You do not currently have access to this content.