This article demonstrates that multiview, broadband (635–935 kHz), nearly monostatic, acoustic reflections recorded from lateral views of juvenile fish can be used to infer animal orientation. Calibrated acoustic data were recorded from live fish in a laboratory, while orientation was measured simultaneously via optical images. Using eight animals, two-dimensional data sets of target strength as a function of frequency and orientation were obtained. Fish length, lateral thickness, and dorsoventral thickness ranged from 24 to 48 mm, 3 to 7 mm and 10 to 20 mm, respectively. Preliminary estimates of orientation were computed from the direction of the gradient of the local autocorrelation function in the target strength image. These local estimates were then median-filtered over the full system bandwidth (but still limited-angle) to improve accuracy. Angular estimates were then corrected for systematic bias via a simple, one-dimensional model that approximated the animals’ reflection by that of a bar target. Taken over all orientations, the average absolute error in orientation estimation is 5.6° to 17°, dependent on the data set. Results indicate, for most sets of views, reasonable estimates of lateral orientation can be obtained from broadband, multiview data over a set of limited angular reflections.

1.
Burwen
,
D. L.
,
Nealson
,
P. A.
,
Fleischman
,
S. J.
,
Mulligan
,
T. J.
, and
Horne
,
J. K.
(
2007
). “
The complexity of narrowband echo envelopes as a function of fish side-aspect angle
,”
ICES J. Mar. Sci.
64
,
1066
1074
.
2.
Cartmill
,
J.
,
Azimi-Sadjadi
,
M. R.
, and
Wachowski
,
N.
(
2009
). “
Buried underwater object classification using a collaborative multiaspect classifier
,”
IEEE J. Ocean. Eng.
34
,
32
44
.
3.
Chu
,
D. Z.
, and
Stanton
,
T. K.
(
1998
). “
Application of pulse compression techniques to broadband acoustic scattering by live individual zooplankton
,”
J. Acoust. Soc. Am.
104
,
39
55
.
4.
De Robertis
A.
,
Schell
C.
, and
Jaffe
J. S.
(
2003
). “
Acoustic observations of the swimming behavior of the euphausiid Euphausia pacifica Hansen
,”
ICES J. Mar. Sci.
60
,
885
898
.
5.
Demer
,
D. A.
,
Soule
,
M. A.
, and
Hewitt
,
R. P.
(
1999
). “
A multiple-frequency method for potentially improving the accuracy and precision of in situ target strength measurements
,”
J. Acoust. Soc. Am.
105
,
2359
2376
.
6.
Foote
,
K. G.
(
1985
). “
Rather-high-frequency sound scattering by swimbladdered fish
,”
J. Acoust. Soc Am.
78
,
688
700
.
7.
Furusawa
M.
and
Miyanohana
Y.
(
1990
). “
Behaviour and target-strength observation through echo traces of individual fish
,”
Rapp. P.-V. Réun. Cons. Int. Explor. Mer.
189
,
283
294
.
8.
Genin
,
A.
,
Jaffe
,
J. S.
,
Reef
,
R.
,
Richter
,
C.
, and
Franks
,
P. J. S.
(
2005
). “
Swimming against the flow: A mechanism of zooplankton aggregation
,”
Science
308
,
860
862
.
9.
Gonzalez
,
R. C.
and
Woods
,
R. E.
(
2002
).
Digital Image Processing
(
Prentice Hall
,
Upper Saddle River, NJ)
, pp.
233
234
.
10.
Holliday
,
D. V.
,
Piper
,
R. E.
, and
Kleppel
,
G. S.
(
1989
). “
Determination of zooplankton size and distribution with multifrequency acoustic technology
,”
ICES J. Mar. Sci.
46
,
52
61
.
11.
Huse
,
I.
and
Ona
,
E.
(
1996
). “
Tilt angle distribution and swimming speed of overwintering Norwegian spring spawning herring
,”
ICES J. Mar. Sci.
53
,
863
873
.
12.
Jaffe
,
J. S.
(
2006
). “
Using multi-angle scattered sound to size fish swimbladders
,”
ICES J. Mar. Sci.
63
,
1397
1404
.
13.
Jaffe
J. S.
,
Ohman
M. D.
, and
De Robertis
,
A.
(
1998
). “
OASIS in the sea: Measurement of the acoustic reflectivity of zooplankton with concurrent optical imaging
,”
Deep-Sea Res., Part II
45
,
1239
1253
.
14.
Kay
,
S. M.
(
1998
).
Fundamentals of Statistical Signal Processing, Vol 2: Detection Theory
(
Prentice Hall
,
Upper Saddle River, NJ)
, pp.
106
112
.
15.
Koslow
,
J. A.
(
2009
). “
The role of acoustics in ecosystem-based fishery management
,”
ICES J. Mar. Sci.
66
,
966
973
.
16.
Lundgren
,
B.
, and
Nielsen
,
J. R.
(
2008
). “
A method for the possible species discrimination of juvenile gadoids by broad-bandwidth backscattering spectra vs angle of incidence
,”
ICES J. Mar. Sci.
65
,
581
593
.
17.
McClatchie
,
S.
,
Alsop
,
J.
,
Ye.
,
Z.
, and
Coombs
,
R. F.
(
1996
). “
Consequence of swimbladder model choice and fish orientation to target strength of three New Zealand fish species
,”
ICES J. Mar. Sci.
53
,
847
862
.
18.
McGehee
,
D. E.
,
O’Driscoll
,
R. L.
, and
Martin-Traykovski
,
L. V.
(
1998
). “
Effects of orientation on acoustic scattering from Antarctic krill at 120 kHz
,”
Deep-Sea Res., Part II
45
,
1273
1294
.
19.
McQuinn
,
I. H.
, and
Winger
,
P. D.
(
2003
). “
Tilt angle and target strength: Target tracking of Atlantic cod (Gadus morhua) during trawling
,”
ICES J. Mar. Sci.
60
,
575
583
.
20.
Moon
,
T. K.
, and
Stirling
,
W. C.
(
2000
).
Mathematical Methods and Algorithms for Signal Processing
(
Prentice-Hall
,
Upper Saddle River, NJ
), pp.
305
310
.
21.
Ona
E.
(
2001
). “
Herring tilt angles, measured through target tracking
,” in
Herring: Expectations for a New Millennium
, edited by
F.
Funk
,
J.
Blackburn
,
D.
Hay
,
A.J.
Paul
,
R.
Stephenson
,
R.
Torenson
, and
D.
Witherell
(
University of Alaska
,
Fairbanks
, University of Alaska Sea Grant, AK-SG-01-04), pp.
509
519
.
22.
Roberts
,
P. L. D.
and
Jaffe
,
J. S.
(
2007
). “
Multiple angle acoustic classification of zooplankton
,”
J. Acoust. Soc. Am.
121
,
2060
2070
.
23.
Roberts
,
P. L. D.
and
Jaffe
,
J. S.
(
2008
). “
Classification of live, untethered zooplankton from observations of multiple-angle acoustic scatter
,”
J. Acoust. Soc. Am.
124
,
796
802
.
24.
Rogers
,
E. O.
,
Fleischer
,
G. W.
,
Simpson
,
P. K.
, and
Denny
,
G. F.
(
2004
). “
Broadband fish identification of Laurentian Great Lakes fishes
,” in
Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
, Vol.
2
, pp.
1430
1434
.
25.
Runkle
,
P. R.
,
Carin
,
L.
,
Couchman
,
L. S.
,
Bucaro
,
J. A.
, and
Yoder
,
T. J.
(
1999
). “
Multiaspect identification of submerged elastic targets via wave-based matching pursuits and hidden Markov models
,”
J. Acoust. Soc. Am.
106
,
605
616
.
26.
Simpson
,
P. K.
(
1993
).“
Active broadband acoustic method and apparatus for identifying aquatic life
,” U. S. patent no. 5,377,163.
27.
Stanton
,
T. K.
,
Reeder
,
D. B.
, and
Jech
,
J. M.
(
2003
). “
Inferring fish orientation from broadband-acoustic echoes
,”
ICES J. Mar. Sci.
60
,
524
531
.
28.
Warren
,
J. D.
,
Stanton
,
T. K.
,
McGehee
,
D. E.
, and
Chu
,
D. Z.
(
2002
). “
Effect of animal orientation on acoustic estimates of zooplankton properties
,”
IEEE J. Ocean. Eng.
27
,
130
138
.
You do not currently have access to this content.