A crucial step in the understanding of vocal behavior of birds is to be able to classify calls in the repertoire into meaningful types. Methods developed to this aim are limited either because of human subjectivity or because of methodological issues. The present study investigated whether a feature generation system could categorize vocalizations of a bird species automatically and effectively. This procedure was applied to vocalizations of African gray parrots, known for their capacity to reproduce almost any sound of their environment. Outcomes of the feature generation approach agreed well with a much more labor-intensive process of a human expert classifying based on spectrographic representation, while clearly out-performing other automated methods. The method brings significant improvements in precision over commonly used bioacoustical analyses. As such, the method enlarges the scope of automated, acoustics-based sound classification.

1.
Al Aïn
,
S.
,
Giret
,
N.
,
Grand
,
M.
,
Kreutzer
,
M.
, and
Bovet
,
D.
(
2009
). “
The discrimination of discrete and continuous quantities in African grey parrots (Psittacus erithacus)
,”
Anim. Cogn
.
12
,
145
154
.
2.
Anderson
,
S. E.
,
Dave
,
A. S.
, and
Margoliash
,
D.
(
1996
). “
Template-based automatic recognition of birdsong syllables from continuous recordings
,”
J. Acoust. Soc. Am
.
100
,
1209
1219
.
4.
Baker
,
M. C.
(
2003
). “
Local similarity and geographic differences in a contact call of the Galah (Cacatua roseicapilla assimilis) in Western Australia
,”
EMU
103
,
233
237
.
5.
Bloomfield
,
L. L.
,
Charrier
,
I.
, and
Sturdy
,
C. B.
(
2004
). “
Note types and coding in parid vocalizations. II: The chick-a-dee call of the mountain chickadee (Poecile gambeli)
,”
Can. J. Zool
.
82
,
780
793
.
51.
Boerma
,
P.
, and
Weenink
,
D.
(
1996
). “
PRAAT: a system for doing phonetics by computer
,”
Glot Int
.
5
,
341
345
.
6.
Budney
,
G. F.
, and
Grotke
,
R. W.
(
1997
). “
Techniques for audio recordings vocalizations of tropical birds
,”
Ornithol. Monogr
.
48
,
147
163
.
7.
Charrier
,
I.
,
Bloomfield
,
L. L.
, and
Sturdy
,
C. B.
(
2004
). “
Note types and coding in parid vocalizations. I: The chick-a-dee call of the black-capped chickadee (Poecile atricapillus)
,”
Can. J. Zool
.
82
,
769
779
.
8.
Chang-Hsing
,
L.
,
Chih-Hsun
,
C.
,
Chin-Chuan
,
H.
, and
Ren-Zhuang
,
H.
(
2006
). “
Automatic recognition of animal vocalizations using averaged MFCC and linear discriminant analysis
,”
Pattern Recogn. Lett
.
27
,
93
101
.
9.
Clark
,
C. W.
,
Marler
,
P.
, and
Beaman
,
K.
(
1987
). “
Quantitative analysis of animal vocal phonology: An application to swamp sparrow song
,”
Ethology
76
,
101
115
.
10.
Clemins
,
P. J.
, and
Johnson
,
M. T.
(
2006
). “
Generalized perceptual linear prediction features for animal vocalization analysis
,”
J. Acoust. Soc. Am
.
120
,
527
534
.
11.
Clemins
,
P. J.
,
Johnson
,
M. T.
,
Leong
,
K. M.
, and
Savage
,
A.
(
2005
). “
Automatic classification and speaker identification of African elephant (Loxodonta africana) vocalizations
,”
J. Acoust. Soc. Am
.
117
,
956
963
.
12.
Cortopassi
,
K. A.
, and
Bradbury
,
J. W.
(
2000
). “
The comparison of harmonically rich sounds using spectrographic cross-correlation and principal coordinates analysis
,”
Bioacoustics
11
,
89
127
.
13.
Cruickshank
,
A. J.
,
Gautier
,
J. P.
, and
Chappuis
,
C.
(
1993
). “
Vocal mimicry in wild African grey parrots (Psittacus erithacus)
,”
Ibis
135
,
293
299
.
14.
Davis
,
S. B.
, and
Mermelstein
,
P.
(
1980
). “
Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
,”
IEEE Trans. Acoust., Speech, Signal Process
.
28
,
357
366
.
16.
Draganoiu
,
T. I.
,
Nagle
,
L.
,
Musseau
,
R.
, and
Kreutzer
,
M.
(
2006
). “
In a songbird, the black redstart, parents use acoustic cues to discriminate between their different fledglings
,”
Anim. Behav
.
71
,
1039
1046
.
17.
Eronen
,
A.
, and
Klapuri
,
A.
(
2000
) “
Musical instrument recognition using cepstral coefficients and temporal features
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
,
2
, pp.
II753
II756
.
18.
Farabaugh
,
S. M.
, and
Dooling
,
R. J.
(
1996
). “
Acoustic communication in parrots: Laboratory and field studies of budgerigars (Melopsittacus undulatus)
,” in
Ecology and Evolution of Acoustic Communication in Birds
, edited by
D. E.
Kroodsma
and
E. H.
Miller
(
Cornell University Press
,
Ithaca, NY
), pp.
97
117
.
19.
Farabaugh
,
S. M.
,
Linzenbold
,
A.
, and
Dooling
,
R. J.
(
1994
). “
Vocal plasticity in budgerigars (Melopsittacus undulatus): Evidence for social factors in the learning of contact calls
,”
J. Comp. Psychol
.
108
,
81
92
.
20.
Fernández-Juricic
,
E.
,
Martella
,
M. B.
, and
Alvarez
,
E. V.
(
1998
). “
Vocalizations of the blue-fronted Amazon (Amazona aestiva) in the Chancaní Reserve
,”
Wilson Bull
.
110
,
352
361
.
21.
Foote
,
J. T.
(
1997
) “
Content-based retrieval of music and audio
,”
Proc. SPIE
,
3229
,
138
147
.
22.
Giret
,
N.
,
Miklósi
,
Á
.,
Kreutzer
,
M.
, and
Bovet
,
D.
(
2009
). “
Use of experimenter given cues by African gray parrots (Psittacus erithacus)
,”
Anim. Cogn
.
12
,
1
10
.
23.
Giret
,
N.
,
Péron
,
F.
,
Lindová
,
J.
,
Tichotová
,
L.
,
Nagle
,
L.
,
Kreutzer
,
M.
,
Tymr
,
F.
, and
Bovet
,
D.
(
2010
). “
Referential learning of French and Czech labels in African grey parrots (Psittacus erithacus): Different methods yield contrasting results
,”
Behav. Processes
85
,
90
98
.
24.
Guyon
,
I.
, and
Elisseeff
,
A.
(
2003
). “
An introduction to variable and feature selection
,”
J. Mach. Learn. Res
.
3
,
1157
1182
.
52.
Hall
,
M. A.
(
2000
). “
Correlation-based feature selection for discrete and numeric class machine learning
” (Working paper 00/08), (
Department of Computer Science, University of Waikato
,
Hamilton, New Zealand)
.
25.
Härmä
,
A.
(
2003
). “
Automatic identification of bird species based on sinusoidal modeling of syllables
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
,
Hong Kong
, pp.
545
548
.
26.
Härmä
,
A.
, and
Somervuo
,
P.
(
2004
). “
Classification of the harmonic structure in bird vocalization
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
,
Montreal
,
Canada
, pp.
701
704
.
27.
Janik
,
V. M.
(
1999
). “
Pitfalls in the categorization of behavior: A comparison of dolphin whistle classification methods
,”
Anim. Behav
.
57
,
133
143
.
28.
Jones
,
A. E.
,
Ten Cate
,
C.
, and
Bijleveld
,
C. C. J. H.
(
2001
). “
The interobserver reliability of scoring sonagrams by eye: A study on methods, illustrated on zebra finch songs
,”
Anim. Behav
.
62
,
791
801
.
29.
Khanna
,
H.
,
Gaunt
,
S. L. L.
, and
Mccallum
,
D. A.
(
1997
). “
Digital spectrographic cross-correlation, tests of sensitivity
,”
Bioacoustics
7
,
209
234
.
30.
Kogan
,
J. A.
, and
Margoliash
,
D.
(
1998
). “
Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden Markov models: A comparative study
,”
J. Acoust. Soc. Am
.
103
,
2185
2196
.
31.
Koza
,
J. R.
(
1992
).
Genetic Programming: On the Programming of Computers by Means of Natural Selection
(
The MIT Press
,
Cambridge, MA
), p.
840
.
32.
Marler
,
P.
(
2004
). “
Science and birdsong: The good and old days
,” in
Nature’s Music
, edited by
P.
Marler
and
H.
Slabbekoorn
(
Elsevier Academic Press
,
San Diego, CA
), pp.
1
38
.
33.
Mccowan
,
B.
(
1995
). “
A new quantitative technique for categorizing whistles using simulated signals and whistles from captive bottlenose dolphins (Delphinidae, Tursiops truncatus)
,”
Ethology
100
,
177
193
.
34.
Milinski
,
M.
(
1997
). “
How to avoid seven deadly sins in the study of behavior
,”
Adv. Study Behav
.
26
,
160
180
.
35.
Mjolsness
,
E.
, and
Decoste
,
D.
(
2001
). “
Machine learning for science: State of the art and future prospects
,”
Science
293
,
2051
2055
.
36.
Molnár
,
C.
,
Kaplan
,
F.
,
Roy
,
P.
,
Pachet
,
F.
,
Pongrácz
,
P.
,
Dóka
,
A.
, and
Miklósi
,
Á
. (
2008
). “
Classification of dog barks: A machine learning approach
,”
Anim. Cogn
.
11
,
389
400
.
37.
Nowicki
,
S.
, and
Nelson
,
D. A.
(
1990
). “
Defining natural categories in acoustic signals: Comparison of three methods applied to “chick-a-dee” call notes
,”
Ethology
86
,
89
101
.
38.
Pachet
,
F.
, and
Roy
,
P.
(
2009
). “
Analytical features: A knowledge-based approach to audio feature generation
,”
EURASIP J. Audio Speech Music Process
, pp.
1
39
.
39.
Pepperberg
,
I. M.
(
1999
).
The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots
(
Harvard University Press
,
Cambridge, MA
), p.
448
.
40.
Pepperberg
,
I. M.
(
2006
). “
Cognitive and communicative abilities of grey parrots
,”
Appl. Anim. Behav. Sci
.
100
,
77
86
.
41.
Pepperberg
,
I. M.
(
2007
). “
Grey parrots do not always ‘parrot’: The roles of imitation and phonological awareness in the creation of new labels from existing vocalizations
,”
Lang. Sci
.
29
,
1
13
.
42.
Quinlan
,
J. R.
(
1993
).
C4.5: Programs for Machine Learning
(
Morgan Kaufmann Publishers
,
San Francisco, CA
), p.
302
.
45.
Schrader
,
L.
, and
Hammerschmidt
,
K.
(
1997
) “
Computer-aided analysis of acoustic parameters in animal vocalizations: A multi-parametric approach
,”
Bioacoustics
7
,
247
265
.
46.
Stockwell
,
D. R. B.
(
2006
). “
Improving ecological niche models by data mining large environmental datasets for surrogate models
,”
Ecol. Modell
.
192
,
188
196
.
47.
Tchernichovski
,
O.
,
Nottebohm
,
F.
,
Ho
,
C. E.
,
Pesaran
,
B.
, and
Mitra
,
P. P.
(
2000
). “
A procedure for an automated measurement of song similarity
,”
Anim. Behav
.
59
,
1167
1176
.
48.
Thorpe
,
W. H.
(
1954
). “
The process of song-learning in the chaffinch as studied by means of the sound spectrograph
,”
Nature
173
,
465
469
.
49.
Tyagi
,
H.
,
Hegde
,
R. M.
,
Murthy
,
H. A.
, and
Prabhakar
,
A.
(
2006
). “
Automatic identification of bird calls using spectral ensemble average voice prints
,” in
Proceedings of the European Signal Processing Conference
(
EUSIPCO
),
Italy
, p.
5
.
50.
Vallet
,
E.
, and
Kreutzer
,
M.
(
1995
). “
Female canaries are sexually responsive to special song phrases
,”
Anim. Behav
.
49
,
1603
1610
.
You do not currently have access to this content.