The effect of liquid compressibility on the dynamics of a single, spherical cavitating bubble is studied. While it is known that compressibility damps the amplitude of bubble rebounds, the extent to which this effect is accurately captured by weakly compressible versions of the Rayleigh–Plesset equation is unclear. To clarify this issue, partial differential equations governing conservation of mass, momentum, and energy are numerically solved both inside the bubble and in the surrounding compressible liquid. Radiated pressure waves originating at the unsteady bubble interface are directly captured. Results obtained with Rayleigh–Plesset type equations accounting for compressibility effects, proposed by Keller and Miksis [J. Acoust. Soc. Am. 68, 628–633 (1980)], Gilmore, and Tomita and Shima [Bull. JSME 20, 1453–1460 (1977)], are compared with those resulting from the full model. For strong collapses, the solution of the latter reveals that an important part of the energy concentrated during the collapse is used to generate an outgoing pressure wave. For the examples considered in this research, peak pressures are larger than those predicted by Rayleigh–Plesset type equations, whereas the amplitudes of the rebounds are smaller.

1.
W.
Besant
,
A Treatise on Hydrostatics and Hydrodynamics
(
Deighton, Bell
,
London
,
1859
), p.
228
.
2.
L.
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag.
34
,
94
(
1917
).
3.
F. R.
Gilmore
, “
The growth of collapse of a spherical bubble in viscous compressible liquid
,” Technical Report No. 26-4,
California Institute of Technology
(
1952
).
4.
J.
Keller
and
M.
Miksis
, “
Bubble oscillations of large amplitude
,”
J. Acoust. Soc. Am.
68
,
628
633
(
1980
).
5.
M.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
(
1977
).
6.
A.
Prosperetti
, “
Bubble phenomena in sound fields: Part one
,”
Ultrasonics
22
,
69
77
(
1984
).
7.
A.
Prosperetti
, “
A new mechanism for sonoluminescence
,”
J. Acoust. Soc. Am.
101
,
2003
2007
(
1997
).
8.
R.
Toegel
and
D.
Lohse
, “
Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory
,”
J. Chem. Phys.
118
,
1863
1875
(
2003
).
9.
Y.
An
and
C.
Ying
, “
Model of single bubble sonoluminescence
,”
Phys. Rev. E
71
,
1
12
(
2005
).
10.
K.
Yasui
,
T.
Tuziuti
,
M.
Sivakumar
, and
Y.
Iida
, “
Theoretical study of single-bubble sonochemistry
,”
J. Chem. Phys.
122
,
1
12
(
2005
).
11.
G.
Hauke
,
D.
Fuster
, and
C.
Dopazo
, “
Dynamics of a single cavitating and reacting bubble
,”
Phys. Rev. E
75
,
1
14
(
2007
).
12.
W.
Moss
, “
Understanding the periodic driving pressure in the Rayleigh–Plesset equation
,”
J. Acoust. Soc. Am.
101
,
1187
1190
(
1997
).
13.
S.
Hilgenfeldt
,
M.
Brenner
,
S.
Grossmann
, and
D.
Lohse
, “
Analysis of the Rayleigh–Plesset dynamics for sonoluminescing bubbles
,”
J. Fluid Mech.
365
,
171
204
(
1998
).
14.
H.
Lin
,
B. D.
Storey
, and
A. J.
Szeri
, “
Inertially driven in homogeneities in violently collapsing bubbles: The validity of the Rayleigh–Plesset equation
,”
J. Fluid Mech.
452
,
145
162
(
2002
).
15.
A.
Preston
,
T.
Colonius
, and
C.
Brennen
, “
A reduced order model of diffusive effects on the dynamics of bubbles
,”
Phys. Fluids
19
,
1
19
(
2007
).
16.
R.
Nigmatulin
,
I.
Akhatov
,
N.
Vakhitova
, and
R.
Lahey
, “
On the forced oscillations of a small gas bubble in a spherical liquid-filled flask
,”
J. Fluid Mech.
414
,
47
73
(
2000
).
17.
E.
Johnson
and
T.
Colonius
, “
Compressible multicomponent flow calculations and shock-wave interactions
,” in
Sixth International Symposium on Cavitation
(
2006
).
18.
A.
Prosperetti
and
A.
Lezzi
, “
Bubble dynamics in a compressible liquid. Part 1. First-order theory
,”
J. Fluid Mech.
168
,
457
478
(
1986
).
19.
A.
Lezzi
and
A.
Prosperetti
, “
Bubble dynamics in a compressible liquid. Part 2. Second-order theory
,”
J. Fluid Mech.
185
,
289
321
(
1987
).
20.
E.
Johnsen
and
T.
Colonius
, “
Implementation of WENO schemes in compressible multi-component flow problems
,”
J. Comput. Phys.
219
,
715
732
(
2006
).
21.
Z.
Wang
,
R.
Pecha
,
B.
Gompf
, and
W.
Eisenmenger
, “
Single bubble sonoluminescence: Investigations of the emitted pressure wave with a fiber optic probe hydrophone
,”
Phys. Rev. E
59
,
1777
(
1999
).
22.
R.
Pecha
and
B.
Gompf
, “
Microimplosions: Cavitation collapse and shock wave emission on a nanosecond time scale
,”
Phys. Rev. Lett.
84
,
1328
1330
(
2000
).
23.
W.
Lauterborn
,
T.
Kurz
,
R.
Geisler
,
D.
Schanz
, and
O.
Lindau
, “
Acoustic cavitation, bubble dynamics and sonoluminiescence
,”
Ultrason. Sonochem.
14
,
484
491
(
2007
).
24.
G.
Reisman
,
Y.
Wang
, and
C.
Brennen
, “
Observations of shock waves in cloud cavitation
,”
J. Fluid. Mech.
344
,
255
(
1998
).
25.
Y.
Wang
, “
Shock waves in bubbly cavitating flows
,” Ph.D. thesis,
California Institute of Technology
, Pasadena, CA,
1996
.
26.
A.
Colussi
,
L.
Weavers
, and
M.
Hoffmann
, “
Chemical bubble dynamics and quantitative sonochemistry
,”
J. Phys. Chem. A
102
,
6927
6934
(
1998
).
27.
G.
Puente
and
F.
Bonetto
, “
Proposed method to estimate the liquid-vapor accommodation coefficient based on experimental sonoluminescence data
,”
Phys. Rev. E
71
(
2005
).
28.
D.
Fuster
, “
Modeling and numerical simulation of the dynamics of liquid-bubble cavitating systems with chemical reaction processes
,” Ph.D. thesis,
Centro Politecnico Superior
, Zaragoza, Spain,
2007
.
29.
D.
Fuster
,
G.
Hauke
, and
C.
Dopazo
, “
Influence of accommodation coefficient on nonlinear bubble oscillations
,”
J. Acoust. Soc. Am.
128
,
5
10
(
2010
).
30.
W.
Press
,
S.
Teulkolsky
,
W.
Vetterling
, and
B.
Flannery
,
Numerical Recipes in Fortran 77
(
Press Syndicate of the University of Cambridge
,
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
,
1992
), Chap. 16.
31.
T.
Hughes
,
W.
Liu
, and
T.
Zimmerman
, “
Langrangian-eulerian finite element formulation for incompressible viscous flows
,”
Comput. Methods Appl. Mech. Eng.
29
,
329
349
(
1981
).
32.
G.
Hauke
and
T.
Hughes
, “
A unified approach to compressible and incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
113
,
389
395
(
1994
).
33.
G.
Hauke
and
T.
Hughes
, “
A comparative study of different sets of variables for solving compressible and incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
153
,
1
44
(
1998
).
34.
T.
Hughes
and
M.
Mallet
, “
A new finite element formulation for computational fluid dynamics: III. the generalized streamline operator for multidimensional advection-diffusion systems
,”
Comput. Methods Appl. Mech. Eng.
58
,
305
328
(
1986
).
35.
F.
Shakib
,
T.
Hughes
, and
Z.
Johan
, “
A new finite element formulation for fluid dynamics formulation: X. the compressible Euler and Navier–Stokes equations
,”
Comput. Methods Appl. Mech. Eng.
89
,
141
219
(
1991
).
36.
G.
Hauke
, “
Simple stabilizing matrices for the computation of compressible flows in primitive variables
,”
Comput. Methods Appl. Mech. Eng.
190
,
6881
6893
(
2001
).
37.
G.
Hauke
,
A.
Landaberea
,
I.
Garmendia
, and
J.
Canales
, “
A segregated method for compressible flow computation part I: Isothermal compressible flows
,”
Int. J. Numer. Methods Fluids
190
,
271
323
(
2004
).
38.
G.
Hauke
,
A.
Landaberea
,
I.
Garmendia
, and
J.
Canales
, “
A segregated method for compressible flow computation. Part II: General divariant compressible flows
,”
Int. J. Numer. Methods Fluids
49
,
183
209
(
2005
).
39.
W.
Press
,
S.
Teulkolsky
,
W.
Vetterling
, and
B.
Flannery
,
Numerical Recipes in For tran 77
(
Press Syndicate of the University of Cambridge
,
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
,
1992
), Chap. 2.
40.
P.
Morse
and
K.
Ingard
,
Theoretical Acoustics
,
927
(
Princenton University Press
,
Princeton, NJ
,
1986
).
41.
C.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
New York
,
1995
), p.
254
.
42.
Z.
Wang
,
R.
Pecha
,
B.
Gompf
, and
W.
Eisenmenger
, “
Single bubble sonoluminescence: Investigations of the emitted pressure wave with a fiber optic probe hydrophone
,”
Phys. Rev. E
59
,
1777
1780
(
1999
).
43.
Y.
Tomita
and
A.
Shima
, “
On the behavior of a spherical bubble and the impulse pressure in a viscous compressible liquid
,”
Bull. JSME
20
,
1453
1460
(
1977
).
You do not currently have access to this content.