The consonance of individual chords presented out of musical context, or the noncontextual consonance of chords, is usually defined as the absence of roughness, which is a sensation perceived when slightly mistuned frequencies are not clearly resolved in the cochlea. The present work uses evoked potentials to demonstrate that the absence of roughness is not sufficient to explain the entirety of noncontextual consonance perception. Presented with a random sequence of various pure-tone intervals (0–13 semitones), listeners’ cerebral cortical activities distinguished these stimuli according to their noncontextual consonance in a manner consistent with standard musical practice, even when the intervals exceeded the critical bandwidth (approximately three semitones). The roughness-based model of noncontextual consonance could not account for this result because these wide intervals had indistinguishably low levels of roughness. Further, this effect was evident only in musicians, indicating plasticity in the underlying neural mechanisms. The results are consistent with the hypothesis that, although the absence of roughness may represent an important aspect of noncontextual consonance, properties of intervals other than those related to roughness also contribute to this perception, underpinned by neural activity in the central auditory system that can be plastically modified by experience.

1.
Alain
,
C.
,
Arnott
,
S. R.
, and
Picton
,
T. W.
(
2001
). “
Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials
,”
J. Exp. Psychol. Hum. Percept. Perform.
27
,
1072
1189
.
2.
Bidelman
,
G. M.
, and
Krishnan
,
A.
(
2009
). “
Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem
,”
J. Neurosci.
29
,
13165
13171
.
3.
Bigand
,
E.
,
Tillmann
,
B.
, and
Poulin-Charronnat
,
B.
(
2006
). “
A module for syntactic processing in music?
,”
Trends Cogn. Sci.
10
,
195
196
.
4.
Blood
,
A. J.
,
Zatorre
,
R. J.
,
Bermudez
,
P.
, and
Evans
,
A. C.
(
1999
). “
Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions
,”
Nat. Neurosci.
2
,
382
387
.
5.
Ebeling
,
M.
(
2008
). “
Neuronal periodicity detection as a basis for the perception of consonance: A mathematical model of tonal fusion
,”
J. Acoust. Soc. Am.
124
,
2320
2329
.
6.
Feeney
,
M. P.
(
1997
). “
Dichotic beats of mistuned consonances
,”
J. Acoust. Soc. Am.
102
,
2333
2342
.
7.
Fine
,
P. A.
, and
Moore
,
B. C. J.
(
1993
). “
Frequency analysis and musical ability
,”
Music Percept.
11
,
39
53
.
8.
Fishman
,
Y. I.
,
Volkov
,
I. O.
,
Noh
,
M. D.
,
Garell
,
P. C.
,
Bakken
,
H.
,
Arezzo
,
J. C.
,
Howard
,
M. A.
, and
Steinschneider
,
M.
(
2001
). “
Consonance and dissonance of musical chords: Neural correlates in auditory cortex of monkeys and humans
,”
J. Neurophysiol.
86
,
2761
2688
.
9.
Foss
,
A. H.
,
Altschuler
,
E. L.
, and
James
,
K. H.
(
2007
). “
Neural correlates of the Pythagorean ratio rules
,”
NeuroReport
18
,
1521
1525
.
10.
Greenwood
,
D. D.
(
1961
). “
Critical bandwidth and the frequency coordinates of the basilar membrane
,”
J. Acoust. Soc. Am.
33
,
1344
1356
.
11.
Guernsey
,
M.
(
1928
). “
The role of consonance and dissonance in music
,”
Am. J. Psychol.
15
,
173
204
.
12.
Hansen
,
J. C.
, and
Hillyard
,
S. A.
(
1980
). “
Endogenous brain potentials associated with selective auditory attention
,”
Electroencephalogr. Clin. Neurophysiol.
49
,
277
290
.
14.
Itoh
,
K.
,
Miyazaki
,
K.
, and
Nakada
,
T.
(
2003a
). “
Ear advantage and consonance of dichotic pitch intervals in absolute-pitch possessors
,”
Brain Cogn
53
,
464
471
.
15.
Itoh
,
K.
,
Suwazono
,
S.
,
Arao
,
H.
,
Miyazaki
,
K.
, and
Nakada
,
T.
(
2005
). “
Electrophysiological correlates of absolute pitch and relative pitch
,”
Cereb. Cortex
15
,
760
769
.
16.
Itoh
,
K.
,
Suwazono
,
S.
, and
Nakada
,
T.
(
2003b
). “
Cortical processing of musical consonance: An evoked potential study
,”
NeuroReport
14
,
2303
2306
.
17.
Izumi
,
A.
(
2000
). “
Japanese monkeys perceive sensory consonance of chords
,”
J. Acoust. Soc. Am.
108
,
3073
3078
.
18.
Kameoka
,
A.
, and
Kuriyagawa
,
M.
(
1969
). “
Consonance theory part I: Consonance of dyads
,”
J. Acoust. Soc. Am.
45
,
1451
1459
.
19.
Koelsch
,
S.
, and
Siebel
,
W. A.
(
2005
). “
Towards a neural basis of music perception
,”
Trends Cogn. Sci.
9
,
578
584
.
20.
Kopiez
,
R.
, and
Platz
,
F.
(
2009
). “
The role of attention, listening expertise and musical style in the recognition of clash of keys
,”
Music Percept.
26
,
321
334
.
21.
Lee
,
K. M.
,
Skoe
,
E
.,
Kraus
,
N.
, and
Ashley
,
R.
(
2009
). “
Selective subcortical enhancement of musical intervals in musicians
,”
J. Neurosci.
29
,
5832
5840
.
22.
Lundin
,
R. W.
(
1947
). “
Toward a cultural theory of consonance
,”
J. Psychol.
23
,
45
49
.
23.
Maher
,
T. F.
(
1976
). “
‘Need for resolution’ ratings for harmonic musical intervals: A comparison between Indians and Canadians
,”
J. Cross-Cult. Psychol.
7
,
259
276
.
24.
McDermott
,
J. H.
,
Lehr
,
A. J.
,
Oxenham
,
A. J.
(
2010
). “
Individual differences reveal the basis of consonance
,”
Curr. Biol.
20
,
1035
1041
.
25.
McDermott
,
J. H.
, and
Oxenham
,
A. J.
(
2008
). “
Music perception, pitch, and the auditory system
,”
Curr. Opin. Neurobiol.
18
,
452
463
.
26.
Minati
,
L.
,
Rosazza
,
C.
,
D’Incerti
,
L.
,
Pietrocini
,
E.
,
Valentini
,
L.
,
Scaioli
,
V.
,
Loveday
,
C.
, and
Bruzzone
,
M. G.
(
2009
). “
Functional MRI/event-related potential study of sensory consonance and dissonance in musicians and nonmusicians
,”
NeuroReport
20
,
87
92
.
27.
Moore
,
B. C. J.
(
1987
). “
Distribution of auditory-filter bandwidths at 2 kHz in young normal listeners
,”
J. Acoust. Soc. Am.
81
,
1633
1635
.
28.
Näätänen
,
R.
,
Gaillard
,
A. W. K.
, and
Mäntysalo
,
S.
(
1978
). “
Early selective-attention effect on evoked potential reinterpreted
,”
Acta Psychol.
42
,
313
329
.
29.
Näätänen
,
R.
,
Paavilainen
,
P.
,
Rinne
,
T.
, and
Alho
,
K.
(
2007
). “
The mismatch negativity (MMN) in basic research of central auditory processing: A review
,”
Clin. Neurophysiol.
118
,
2544
2590
.
30.
Nager
,
W.
,
Kohlmetz
,
C.
,
Altenmüller
,
E.
,
Rodriguez-Fornells
,
A.
, and
Münte
,
T. F.
(
2003
). “
The fate of sounds in conductors’ brains: An ERP study
,”
Brain Res. Cogn. Brain Res.
2003
,
83
93
.
31.
Oxenham
,
A. J.
,
Fligor
,
B. J.
,
Mason
,
C. R.
, and
Kidd
,
G.
, Jr.
(
2003
). “
Informational masking and musical training
,”
J. Acoust. Soc. Am.
114
,
1543
1549
.
32.
Plomp
,
R.
(
1965
). “
Detectability threshold for combination tones
,”
J. Acoust. Soc. Am.
37
,
1110
1123
.
33.
Plomp
,
R.
, and
Levelt
,
W. J. M.
(
1965
). “
Tonal consonance and critical bandwidth
,”
J. Acoust. Soc. Am.
38
,
548
560
.
34.
Randel
,
D. M.
, editor. (
1986
).
The New Harvard Dictionary of Music
(
Belknap Press
,
Cambridge, MA
), pp.
197
199
.
35.
Regnault
,
P.
,
Bigand
,
E.
, and
Besson
,
M.
(
2001
). “
Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: Evidence from auditory event-related brain potentials
,”
J. Cogn. Neurosci.
13
,
241
255
.
38.
Schellenberg
,
E. G.
, and
Trehub
,
S. E.
(
1994
). “
Frequency ratios and the perception of tone patterns
,”
Psychon. Bull. Rev.
1
,
191
201
.
39.
Schön
,
D.
,
Regnault
,
R.
,
Ystad
,
S.
, and
Besson
,
M.
(
2005
). “
Sensory consonance: An ERP Study
,”
Music Percept.
23
,
105
118
.
36.
Shahin
,
A.
,
Bosnyak
,
D. J.
,
Trainor
,
L. J.
, and
Roberts
,
L. E.
(
2003
). “
Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians
,”
J. Neurosci.
23
,
5545
5552
.
37.
Shapira-Lots
,
I.
, and
Stone
,
L.
(
2008
). “
Perception of musical consonance and dissonance: An outcome of neural synchronization
,”
J. R. Soc., Interface
5
,
1429
434
.
40.
Stumpf
,
C.
(
1898
). “
Consonance and Dissonance
,”
Beitr. Akust. Musikwiss.
1
,
1
108
.
43.
Tenney
,
J. A.
(
1988
).
A History of ‘Consonance’ and ‘Dissonance’
(
Excelsior
,
New York
), pp.
109
111
.
41.
Terhardt
,
E.
(
1974
) “
Pitch, consonance, and harmony
,”
J. Acoust. Soc. Am.
55
,
1061
1069
.
42.
Terhardt
,
E.
(
1984
). “
The concept of musical consonance: A link between music and psychoacoustics
,”
Music Percept.
1
,
276
295
.
44.
Tramo
,
M. J.
,
Cariani
,
P. A.
,
Delgutte
,
B.
, and
Braida
,
L. D.
(
2001
). “
Neurobiological foundations for the theory of harmony in Western tonal music
,”
Ann. N. Y. Acad. Sci.
930
,
92
116
.
13.
von Helmholtz
,
H.
(
1863/1954
).
“Die Lehre den Tonempfindungen als physiologische Grundlage fur die Theorie der Musik” (“On the Sensations of Tone as a Physiological Basis for the Theory of Music”)
, translated by A. J. Ellis (
Dover
,
New York
), Chap. 10, pp.
179
197
.
45.
Zendel
,
B. R.
, and
Alain
,
C.
(
2009
). “
Concurrent sound segregation is enhanced in musicians
,”
J. Cogn. Neurosci.
21
,
1488
1498
.
You do not currently have access to this content.