The vocal tract shape is three-dimensionally complex. For accurate acoustic analysis, a finite-difference time-domain method was introduced in the present study. By this method, transfer functions of the vocal tract for the five Japanese vowels were calculated from three-dimensionally reconstructed magnetic resonance imaging (MRI) data. The calculated transfer functions were compared with those obtained from acoustic measurements of vocal tract physical models precisely constructed from the same MRI data. Calculated transfer functions agreed well with measured ones up to 10 kHz. Acoustic effects of the piriform fossae, epiglottic valleculae, and inter-dental spaces were also examined. They caused spectral changes by generating dips. The amount of change was significant for the piriform fossae, while it was almost negligible for the other two. The piriform fossae and valleculae generated spectral dips for all the vowels. The dip frequencies of the piriform fossae were almost stable, while those of the valleculae varied among vowels. The inter-dental spaces generated very small spectral dips below 2.5 kHz for the high and middle vowels. In addition, transverse resonances within the oral cavity generated small spectral dips above 4 kHz for the low vowels.

1.
Adachi
,
S.
, and
Yamada
,
M.
(
1999
). “
An acoustical study of sound production in biphonic singing Xöömij
,”
J. Acoust. Soc. Am.
105
,
2920
2932
.
2.
Baer
,
T.
,
Gore
,
J. C.
,
Gracco
,
L. C.
, and
Nye
,
P. W.
(
1991
). “
Analysis of vocal tract shape and dimensions using magnetic resonance imaging: Vowels
,”
J. Acoust. Soc. Am.
90
,
799
828
.
3.
Berenger
,
J. P.
(
1994
). “
A perfectly matched layer for the absorption of electromagnetic waves
,”
J. Comput. Phys.
114
,
185
200
.
4.
Caussé
,
R.
,
Kergomard
,
J.
, and
Lurton
,
X.
(
1984
). “
Input impedance of brass musical instruments—Comparison between experiment and numerical models
,”
J. Acoust. Soc. Am.
75
,
241
254
.
5.
Dang
,
J. W.
, and
Honda
,
K.
(
1997
). “
Acoustic characteristics of the piriform fossa in models and humans
,”
J. Acoust. Soc. Am.
101
,
456
465
.
6.
Fant
,
G.
(
1970
).
Acoustic Theory of Speech Production
(
Mouton, The Hague
,
Paris
), Chap. 1.4, pp.
63
90
.
7.
Flanagan
,
J. L.
(
1972
).
Speech Analysis, Synthesis, and Perception
(
Springer-Verlag
,
New York
), Chap. III, pp.
23
86
.
8.
Honda
,
K.
,
Takano
,
S.
, and
Takemoto
,
H.
(
2010
). “
Effects of side cavities and tongue stabilization: Possible extensions of the quantal theory
,”
J. Phonetics
38
,
33
43
.
11.
Kagawa
,
Y.
,
Shimoyama
,
R.
,
Yamabuchi
,
T.
,
Murai
,
T.
, and
Takarada
,
K.
(
1992
). “
Boundary element models of the vocal tract and radiation field and their response characteristics
,”
J. Sound Vib.
157
,
385
403
.
9.
Kitamura
,
T.
,
Honda
,
K.
, and
Takemoto
,
H.
(
2005
). “
Individual variation of the hypopharyngeal cavities and its acoustic effects
,”
Acoust. Sci. & Tech.
26
,
16
26
.
10.
Kitamura
,
T.
,
Takemoto
,
H.
,
Adachi
,
S.
, and
Honda
,
K.
(
2009
). “
Transfer functions of solid vocal-tract models constructed from ATR MRI database of Japanese vowel production
,”
Acoust. Sci. & Tech.
30
,
288
296
.
12.
Matsuzaki
,
H.
, and
Motoki
,
K.
(
2007
). “
Study of acoustic characteristics of vocal tract with nasal cavity during phonation of Japanese /a/
,”
Acoust. Sci. & Tech.
28
,
124
127
.
13.
Motoki
,
K.
(
2002
). “
Three-dimensional acoustic field in vocal tract
,”
Acoust. Sci. & Tech.
23
,
207
212
.
14.
Motoki
,
K.
,
Miki
,
N.
, and
Nagai
,
N.
(
1992
). “
Measurement of sound-pressure distribution in replicas of the oral cavity
,”
J. Acoust. Soc. Am.
92
,
2577
2585
.
15.
Rokkaku
,
M.
,
Hashimoto
,
K.
,
Imaizumi
,
S.
,
Niimi
,
S.
, and
Kiritani
,
S.
(
1986
). “
Measurements of the three-dimensional shape of the vocal tract based on the magnetic resonance imaging technique
,”
Ann. Bull. RILP.
20
,
47
54
. Available at http://www.umin.ac.jp/memorial/rilp-tokyo/NO20.htm (Last viewed June 10, 2010).
16.
Stevens
,
K. N.
(
2000
),
Acoustic Phonetics
(
The MIT Press
,
Cambridge, MA
), Chap. 3, pp.
127
202
.
17.
Story
,
B. H.
,
Titze
,
I. R.
, and
Hoffman
,
E. A.
(
1996
). “
Vocal tract area functions from magnetic resonance imaging
,”
J. Acoust. Soc. Am.
100
,
537
554
.
18.
Suzuki
,
Y.
,
Asano
,
F.
,
Kim
,
H. Y.
, and
Sone
,
T.
(
1995
). “
An optimum computer-generated pulse signal suitable for the measurement of very long impulse responses
,”
J. Acoust. Soc. Am.
97
,
1119
1123
.
19.
Takano
,
S.
,
Honda
,
K.
, and
Kinoshita
,
K.
(
2006
). “
Measurement of cricothyroid articulation using high-resolution MRI and 3D pattern matching
,”
Acta Acust.
92
,
725
730
.
20.
Takemoto
,
H.
,
Adachi
,
S.
,
Kitamura
,
T.
,
Mokhtari
,
P.
, and
Honda
,
K.
(
2006b
). “
Acoustic roles of the laryngeal cavity in vocal tract resonance
,”
J. Acoust. Soc. Am.
120
,
2228
2238
.
21.
Takemoto
,
H.
,
Honda
,
K.
,
Masaki
,
S.
,
Shimada
,
Y.
, and
Fujimoto
,
I.
(
2006a
).“
Measurement of temporal changes in vocal tract area function from 3D cine-MRI data
,”
J. Acoust. Soc. Am.
119
,
1037
1049
.
22.
Takemoto
,
H.
,
Kitamura
,
T.
,
Honda
,
K.
, and
Masaki
,
S.
(
2008
). “
Deformation of the hypopharyngeal cavities due to F0 changes and its acoustic effects
,”
Acoust. Sci. & Tech.
29
,
300
303
.
23.
Takemoto
,
H.
,
Kitamura
,
T.
,
Nishimoto
,
H.
, and
Honda
,
K.
(
2004
). “
A method of tooth superimposition on MRI data for accurate measurement of vocal tract shape and dimensions
,”
Acoust. Sci. & Tech.
28
,
33
38
.
24.
Titze
,
I. R.
, and
Story
,
B. H.
(
1997
). “
Acoustic interactions of the voice source with the lower vocal tract
,”
J. Acoust. Soc. Am.
101
,
2234
2243
.
25.
Vampola
,
T.
,
Horáček
,
J.
, and
Švec
,
J.
(
2008a
). “
FE modeling of human vocal tract acoustics Part I: Production of Czech vowels
,”
Acta Acust.
94
,
433
447
.
26.
Vampola
,
T.
,
Horáček
,
J.
,
Vokřál
,
J.
, and
Černý
,
L.
(
2008b
). “
FE modeling of human vocal tract acoustics Part II: Influence of velopharyngeal insufficiency on phonation of vowels
,”
Acta Acust.
94
,
448
460
.
27.
Yee
,
K. S.
(
1966
). “
Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media
,”
IEEE Trans. Antennas Propag.
AP-14
,
302
307
.
28.
Yokota
,
T.
,
Sakamoto
,
S.
, and
Tachibana
,
H.
(
2002
). “
Visualization of sound propagation and scattering in rooms
,”
Acoust. Sci. & Tech.
23
,
40
46
.
29.
Yuan
,
X.
, and
Berggren
,
M.
(
1997
). “
Formulation and validation of Berenger’s PML absorbing boundary for the FDTD simulation of acoustic scattering
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control.
44
,
816
822
.
30.
Zhou
,
X.
,
Espy-Wilson
,
C. Y.
,
Boyce
,
S.
,
Tiede
,
M.
,
Holland
,
C.
, and
Choe
,
A.
(
2008
). “
A magnetic resonance imaging-based articulatory and acoustic study of “retroflex” and “bunched” American English /r/
,”
J. Acoust. Soc. Am.
123
,
4466
4481
.
You do not currently have access to this content.