Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz–20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE’07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise.

1.
Z.-H.
Michalopoulou
, “
Matched-impulse-response processing for shallow-water localization and geoacoustic inversion
,”
J. Acoust. Soc. Am.
108
,
2082
2090
(
2000
).
2.
M. B.
Porter
,
S. M.
Jesus
,
Y.
Stéphan
,
E.
Coelho
, and
X.
Démoulin
, “
Single phone source tracking in a variable environment
,” in
Proceedings of the European Conference on Underwater Acoustics
,
Rome, Italy
(
1998
).
3.
M.-I.
Taroudakis
and
G.-N.
Makrakis
,
Inverse Problems in Underwater Acoustics
(
Springer-Verlag
,
New York
,
2001
), pp.
1
215
.
4.
N. F.
Josso
,
C.
Ioana
,
J. I.
Mars
,
C.
Gervaise
, and
Y.
Stéphan
, “
On the consideration of motion effects in the computation of impulse response for underwater acoustics inversion
,”
J. Acoust. Soc. Am.
126
,
1739
1751
(
2009
).
5.
N. F.
Josso
,
C.
Ioana
,
C.
Gervaise
,
Y.
Stephan
, and
J. I.
Mars
, “
Motion effect modeling in multipath configuration using warping based lag-Doppler filtering
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
,
Paris, France
(
2009
), pp.
2301
2304
.
6.
N.
Josso
,
J.
Zhang
,
A.
Papandreou-Suppappola
,
C.
Ioana
,
J.
Mars
,
C.
Gervaise
, and
Y.
Stéphan
, “
On the characterization of time-scale underwater acoustic signals using matching pursuit decomposition
,” in
Proceedings of MTS/IEEE Conference OCEANS’09
,
Biloxi, MS
(
2009
), pp.
1
6
.
7.
A.
Baggeroer
,
W.
Kuperman
, and
P.
Mikhalevsky
, “
An overview of matched field methods in ocean acoustics,
IEEE J. Ocean. Eng.
18
,
401
424
(
1993
).
8.
L.
Sibul
,
L.
Weiss
, and
T.
Dixon
, “
Characterization of stochastic propagation and scattering via Gabor and wavelet transforms
,”
J. Comput. Acoust.
2
,
345
369
(
1994
).
9.
R.
Shenoy
and
T.
Park
, “
Wideband ambiguity functions and affine Wigner distributions
,”
EURASIP J. Signal Process.
41
,
339
363
(
1995
).
10.
B.
Iem
,
A.
Papandreou-Suppappola
, and
G.
Boudreaux-Bartels
, “
Wideband Weyl symbols for dispersive time-varying processing of systems and random signals
,”
IEEE Trans. Signal Process.
50
,
1077
1090
(
2002
).
11.
Y.
Jiang
and
A.
Papandreou-Suppappola
, “
Discrete time-frequency models of generalized dispersive systems
,”
IEEE Int. Conf. Acoust., Speech, Signal Process.
3
,
349
352
(
2006
).
12.
S.
Rickard
,
Time-frequency and Time-scale Representations of Doubly Spread Channels
(
Princeton University
,
Princeton, NJ
,
2003
), pp.
1
110
.
13.
N. F.
Josso
,
J. J.
Zhang
,
A.
Papandreou-Suppappola
,
C.
Ioana
,
C.
Gervaise
,
Y.
Stephan
, and
J. I.
Mars
, “
Wideband discrete transformation of acoustic signals in underwater environments
,” in
Proceedings of Asilomar IEEE Conference on Signals, Systems, and Computers
,
Asilomar, CA
(
2009
), pp.
118
122
.
14.
N. F.
Josso
,
J. J.
Zhang
,
D.
Fertonani
,
A.
Papandreou-Suppappola
, and
T. M.
Duman
, “
Time-varying wideband underwater acoustic channel estimation for OFDM communications
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
,
Dallas, TX
(
2010
), pp.
5626
5629
.
15.
S.
Qian
and
D.
Chen
, “
Signal representation using adaptive normalized Gaussian functions
,”
Signal Process.
36
,
1
11
(
1994
).
16.
S.
Mallat
and
Z.
Zhang
, “
Matching pursuits with time-frequency dictionaries
,”
IEEE Trans. Signal Process.
41
,
3397
3415
(
1993
).
17.
H.
Zou
,
Y.
Chen
,
J.
Zhu
,
Q.
Dai
,
G.
Wu
, and
Y.
Li
, “
Steady-motion-based dopplerlet transform: Application to the estimation of range and speed of a moving sound source
,”
IEEE. J. Ocean. Eng.
29
,
887
905
(
2004
).
18.
J.
Hermand
and
W.
Roderick
, “
Delay-doppler resolution performance of large time-bandwidth-product linear FM signals in a multipath ocean environment
,”
J. Acoust. Soc. Am.
84
,
1709
1727
(
1988
).
19.
C.
Gervaise
,
S.
Vallez
,
C.
Ioana
,
Y.
Stephan
, and
Y.
Simard
, “
Passive acoustic tomography: New concepts and applications using marine mammals: A review
,”
J. Mar. Biol. Assoc. UK
87
,
5
10
(
2007
).
20.
A. N.
Guthrie
,
R. M.
Fitzgerald
,
D. A.
Nutile
, and
J. D.
Shaffer
, “
Long-range low-frequency CW propagation in the deep ocean: Antigua-newfoundland
,”
J. Acoust. Soc. Am.
56
,
58
69
(
1974
).
21.
K. E.
Hawker
, “
A normal mode theory of acoustic doppler effects in the oceanic waveguide
,”
J. Acoust. Soc. Am.
65
,
675
681
(
1979
).
22.
P. H.
Lim
and
J. M.
Ozard
, “
On the underwater acoustic field of a moving point source. I. Range-independent environment
,”
J. Acoust. Soc. Am.
95
,
131
137
(
1994
).
23.
R. P.
Flanagan
,
N. L.
Weinberg
, and
J. G.
Clark
, “
Coherent analysis of ray propagation with moving source and fixed receiver
,”
J. Acoust. Soc. Am.
56
,
1673
1680
(
1974
).
24.
J. G.
Clark
,
R. P.
Flanagan
, and
N. L.
Weinberg
, “
Multipath acoustic propagation with a moving source in a bounded deep ocean channel
,”
J. Acoust. Soc. Am.
60
,
1274
1284
(
1976
).
25.
R.
Baraniuk
and
D.
Jones
, “
Unitary equivalence: A new twist on signal processing
,”
IEEE Trans. Signal Process.
43
,
2269
2282
(
1995
).
26.
A.
Jarrot
,
C.
Ioana
, and
A.
Quinquis
, “
Toward the use of the time warping principle with discrete time sequences
,”
J. Comput. Acad. Pub.
2
,
49
55
(
2007
).
27.
G.
Le Touzé
,
B.
Nicolas
,
J. I.
Mars
, and
J.-L.
Lacoume
, “
Matched representations and filters for guided waves
,” IEEE Trans. Signal Process.
57
,
1783
1795
(
2009
).
28.
R.
Altes
, “
Wide-band, proportional-bandwidth Wigner-Ville analysis
,”
IEEE Trans. Acoust., Speech, Signal Process.
38
,
1005
1012
(
1990
).
29.
A.
Papandreou
,
F.
Hlawatsch
, and
G. F.
Boudreaux-Bartels
, “
The hyperbolic class of quadratic time-frequency representations Part I: Constant-Q warping, the hyperbolic paradigm, properties, and members
,”
IEEE Trans. Signal Process.
41
,
3425
3444
(
1993
).
30.
B.
Harris
and
S.
Kramer
, “
Asymptotic evaluation of the ambiguity functions of high-gain fm matched filter sonar systems
,” Proc. IEEE
56
,
2149
2157
(
1968
).
31.
S.
Kramer
, “
Doppler and acceleration tolerances of high-gain, wideband linear FM correlation sonars
,”
Proc. IEEE
55
,
627
636
(
1967
).
32.
C. L.
Pekeris
, “
Theory of propagation of explosive sound in shallow water
,” in
Propagation of Sound in the Ocean, Memoir 27
(
Geological Society of America
,
New York
,
1948
), pp.
1
117
.
33.
G.
Theuillon
and
Y.
Stéphan
, “
Geoacoustic characterization of the seafloor from a subbottom profiler applied to the BASE’07 experiment
,”
J. Acoust. Soc. Am.
123
,
3108
(
2008
).
You do not currently have access to this content.