Dynamic acoustoelastic testing is applied to weakly pre-loaded unconsolidated water-saturated glass beads. The gravitational acceleration produces, on the probed beads, a static stress of order 130 Pa, thus the granular medium is close to the jamming transition. A low-frequency (LF) acoustic wave gently disturbs the medium, inducing successively slight expansion and compaction of the granular packing expected to modulate the number of contacts between beads. Ultrasound (US) pulses are emitted simultaneously to dynamically detect the induced modification of the granular skeleton. US propagation velocity and attenuation both increase when the LF pressure increases. The quadratic nonlinear elastic parameter β, related to the pressure dependence of US propagation velocity, was measured in the range 60–530 if water-saturated glass beads are considered as an effective medium. A dynamic modification of US scattering induced by beads is proposed to modulate US attenuation. Complex hysteretic behaviors and tension-compression asymmetry are also observed and analyzed by time-domain and spectral analyses. Furthermore acoustic nonlinearities are measured in cases of quasi-static and dynamic variations of the LF wave amplitude, providing quantitatively similar acoustic nonlinearities but qualitatively different.

1.
A.
Nolle
,
W.
Hoyer
,
J.
Mifsud
,
W.
Runyan
, and
M.
Ward
, “
Acoustical properties of water-filled sands
,”
J. Acoust. Soc. Am.
35
,
1394
1408
(
1963
).
2.
S.
Domenico
, “
Elastic properties of unconsolidated porous sand reservoirs
,”
Geophysics
42
(
7
),
1339
1368
(
1977
).
3.
X.
Jia
,
C.
Caroli
, and
B.
Velicky
, “
Ultrasound propagation in externally stressed granular media
,”
Phys. Rev. Lett.
82
(
9
),
1863
1866
(
1999
).
4.
K.
Winkler
and
W.
Murphy
, “
Scattering in glass beads: Effects of frame and pore fluid compressibilities
,”
J. Acoust. Soc. Am.
76
(
3
),
820
825
(
1984
).
5.
R.
Benson
and
V.
Raelson
, “
Acoustoelasticity
,”
Prod. Eng.
30
,
56
59
(
1959
).
6.
R.
Toupin
and
B.
Bernstein
, “
Sound waves in deformed perfectly elastic materials. Acoustoelastic effect
,”
J. Acoust. Soc. Am.
33
(
2
),
216
225
(
1961
).
7.
T.
Brunet
,
X.
Jia
, and
P.
Mills
, “
Mechanisms for acoustic absorption in dry and weakly wet granular media
,”
Phys. Rev. Lett.
101
,
138001
(
2008
).
8.
K. L.
Johnson
,
Contact Mechanics
(
Cambridge University Press
,
Cambridge
,
1985
), pp.
1
472
.
9.
V.
Tournat
,
V.
Zaitsev
,
V.
Gusev
,
V.
Nazarov
,
P.
Bequin
, and
B.
Castagnede
, “
Probing weak forces in granular media through nonlinear dynamic dilatancy: Clapping contacts and polarization anisotropy
,”
Phys. Rev. Lett.
92
(
8
),
085502
(
2004
).
10.
V.
Tournat
and
V.
Gusev
, “
Nonlinear effects for coda-type elastic waves in stressed granular media
,”
Phys. Rev. E
80
(
1
),
011306
(
2009
).
11.
V.
Aleshin
,
V.
Gusev
, and
V.
Tournat
, “
Acoustic modes propagating along the free surface of granular media
,”
J. Acoust. Soc. Am.
121
(
5
),
2600
2611
(
2007
).
12.
X.
Jacob
,
V.
Aleshin
,
V.
Tournat
,
P.
Leclaire
,
W.
Lauriks
, and
V.
Gusev
, “
Acoustic probing of the jamming transition in an unconsolidated granular medium
,”
Phys. Rev. Lett.
100
,
158003
(
2008
).
13.
V.
Gusev
and
V.
Tournat
, “
How acoustic waves are guided in buried subsurface channels in unconsolidated granular media
,”
Phys. Rev. E
78
,
036602
(
2008
).
14.
H.
Makse
,
N.
Gland
,
D.
Johnson
, and
L.
Schwartz
, “
Granular packings: Nonlinear elasticity, sound propagation, and collective relaxation dynamics
,”
Phys. Rev. E
70
,
061302
1
(
2004
).
15.
C.
O’Hern
,
L.
Silbert
,
A.
Liu
, and
S.
Nagel
, “
Jamming at zero temperature and zero applied stress: The epitome of disorder
,”
Phys. Rev. E
68
,
011306
(
2003
).
16.
G.
Renaud
,
S.
Callé
,
J. -P.
Remenieras
, and
M.
Defontaine
, “
Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation
,”
IEEE Trans. UFFC
55
(
7
),
1497
1507
(
2008
).
17.
G.
Renaud
, “
Measurement of elastic and dissipative nonlinearities using acoustic waves interaction: Application to the assessment of the level of microdamage in trabecular bone tissue (in French)
,” Ph.D. thesis,
University of Tours
, France,
2008
.
18.
G.
Renaud
,
S.
Callé
, and
M.
Defontaine
, “
Remote dynamic acoustoelastic testing: Elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression
,”
Appl. Phys. Lett.
94
,
011905
(
2009
).
19.
J.
Page
,
H.
Schriemer
,
A.
Bailey
, and
D.
Weitz
, “
Experimental test of the diffusion approximation for multiplied scattered sound
,”
Phys. Rev. E
52
(
3
),
3106
3114
(
1995
).
20.
D.
Salin
and
W.
Schön
, “
Acoustics of water saturated packed glass spheres
,”
J. Phys.
42
,
L477
L480
(
1981
).
21.
R.
Weaver
and
W.
Sachse
, “
Diffusion of ultrasound in a glass bead slurry
,”
J. Acoust. Soc. Am.
97
(
4
),
2094
2102
(
1995
).
22.
L.
Schwartz
and
T.
Plona
, “
Ultrasonic propagation in close-packed disordered suspensions
,”
J. Appl. Phys.
55
,
3971
(
1984
).
23.
C.
Coste
,
E.
Falcon
, and
S.
Fauve
, “
Solitary waves in a chain of beads under hertz contact
,”
Phys. Rev. E
56
(
5
),
6104
6117
(
1997
).
24.
V.
Tournat
,
C.
Inserra
, and
V.
Gusev
, “
Non-cascade frequency-mixing processes for elastic waves in unconsolidated granular materials
,”
Ultrasonics
48
(
6–7
),
492
497
(
2008
).
25.
K.
Lee
,
V.
Humphrey
,
B. -N.
Kim
, and
S.
Yoon
, “
Frequency dependencies of phase velocity and attenuation coefficient in a water-saturated sandy sediment from 0.3 to 1.0 MHz
,”
J. Acoust. Soc. Am.
121
(
5
),
2553
2558
(
2007
).
26.
K.
Waters
,
M.
Hughes
, and
J.
Mobley
, “
On the applicability of Kramers-Krönig relations for ultrasonic attenuation obeying a frequency power law
,”
J. Acoust. Soc. Am.
108
(
2
),
556
563
(
2000
).
27.
M.
Hamilton
and
D.
Blackstock
,
Nonlinear Acoustics, Theory and Applications
(
Academic Press
,
New York
,
1998
), Chap. 2, pp. 25–39 and Chap. 9, pp. 263–277.
28.
N. I.
Geza
,
G. V.
Egorov
,
Y. V.
Mkrtumyan
, and
V. I.
Yushin
, “
Instantaneous variations in velocity and attenuation of seismic waves in a friable medium in situ under pulsatory dynamic loading: An experimental study
,”
Russ. Geol. Geophys.
42
(
7
),
1079
1087
(
2001
).
29.
V. Y.
Zaitsev
,
A. B.
Kolpakov
, and
V. E.
Nazarov
, “
Detection of acousticpulses in river sand: Experiment
,”
Acoust. Phys.
45
(
2
),
202
208
(
1999
).
30.
V. Y.
Zaitsev
,
A. B.
Kolpakov
, and
V. E.
Nazarov
, “
Detection of acoustic pulses in river sand. Theory
,”
Acoust. Phys.
45
(
3
),
305
310
(
1999
).
31.
M.
Zimmer
,
M.
Prasad
,
G.
Mavko
, and
A.
Nur
, “
Seismic velocities of unconsolidated sands: Part 1-pressure trends from 0.1 to 20 MPa
,”
Geophysics
72
,
E1
E13
(
2007
).
32.
T.
Brunet
,
X.
Jia
, and
P.
Johnson
, “
Transitional nonlinear elastic behaviour in dense granular media
,”
Geophys. Res. Lett.
35
,
L19308
(
2008
).
33.
O. O.
Vakhnenko
,
V. O.
Vakhnenko
, and
T. J.
Shankland
, “
Soft-ratchet modeling of end-point memory in the nonlinear resonant response of sedimentary rocks
,”
Phys. Rev. B
71
(
17
),
174103
(
2005
).
34.
C.
Inserra
, “
Characterization of granular compaction by linear and nonlinear acoustic methods (in French)
,” Ph.D. thesis,
University of Le Mans
, France,
2007
.
35.
C.
Inserra
,
V.
Tournat
, and
V.
Gusev
, “
Characterization of granular compaction by nonlinear acoustic resonance method
,”
Appl. Phys. Lett.
92
,
191916
(
2008
).
36.
J.
Ten Cate
and
T.
Shankland
, “
Slow dynamics in the nonlinear elastic response of berea sandstone
,”
Geophys. Res. Lett.
23
,
3019
3022
(
1996
).
37.
M.
Nicodemi
,
A.
Coniglio
, and
H.
Herrmann
, “
Frustration and slow dynamics of granular packings
,”
Phys. Rev. E
55
(
4
),
3962
3969
(
1997
).
38.
L.
Ostrovsky
and
P.
Johnson
, “
Dynamic nonlinear elasticity in geomaterials
,”
Rivista del Nuovo Cimento
24
,
1
46
(
2001
).
You do not currently have access to this content.