The propagation of nonlinear spherically diverging N-waves in homogeneous air is studied experimentally and theoretically. A spark source is used to generate high amplitude (1.4 kPa) short duration (40 μs) N-waves; acoustic measurements are performed using microphones (3 mm diameter, 150 kHz bandwidth). Numerical modeling with the generalized Burgers equation is used to reveal the relative effects of acoustic nonlinearity, thermoviscous absorption, and oxygen and nitrogen relaxation on the wave propagation. The results of modeling are in a good agreement with the measurements in respect to the wave amplitude and duration. However, the measured rise time of the front shock is ten times longer than the calculated one, which is attributed to the limited bandwidth of the microphone. To better resolve the shock thickness, a focused shadowgraphy technique is used. The recorded optical shadowgrams are compared with shadow patterns predicted by geometrical optics and scalar diffraction model of light propagation. It is shown that the geometrical optics approximation results in overestimation of the shock rise time, while the diffraction model allows to correctly resolve the shock width. A combination of microphone measurements and focused optical shadowgraphy is therefore a reliable way of studying evolution of spark-generated shock waves in air.

1.
W. M.
Wright
, “
Propagation in air of N waves produced by sparks
,”
J. Acoust. Soc. Am.
73
,
1948
1955
(
1983
).
2.
Q.
Qin
and
K.
Attenborough
, “
Characteristics and application of laser-generated acoustic shock waves in air
,”
Appl. Acoust.
65
,
325
340
(
2004
).
3.
P. V.
Yuldashev
,
M. V.
Averiyanov
,
V. A.
Khokhlova
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Nonlinear spherically divergent shock waves propagating in a relaxing medium
,”
Acoust. Phys.
54
,
32
41
(
2006
).
4.
B. A.
Davy
and
D. T.
Blackstock
, “
Measurements of the refraction and diffraction of a short N wave by a gas-filled soap bubble
,”
J. Acoust. Soc. Am.
49
,
732
737
(
1971
).
5.
B.
Lipkens
, “
Experimental and theoretical study of the propagation of N-waves through a turbulent medium
,” Ph.D. thesis,
The University of Texas at Austin
,
1993
.
6.
B.
Lipkens
and
D. T.
Blackstock
, “
Model experiment to study sonic boom propagation through turbulence. Part I: Model experiment and general results
,”
J. Acoust. Soc. Am.
103
,
148
158
(
1998
).
7.
B.
Lipkens
and
D. T.
Blackstock
, “
Model experiment to study sonic boom propagation through turbulence. Part II: Effect of turbulence intensity and propagation distance through turbulence
,”
J. Acoust. Soc. Am.
104
,
1301
1309
(
1998
).
8.
B.
Lipkens
, “
Model experiment to study sonic boom propagation through turbulence. Part III: Validation of sonic boom propagation models
,”
J. Acoust. Soc. Am.
111
,
509
519
(
2002
).
9.
S.
Ollivier
and
P.
Blanc-Benon
, “
Model experiment to study acoustic N-wave propagation through turbulence
,” in
10th AIAA/CEAS Aeroacoustics Conference
,
Manchester
,
UK
, AIAA
2004
2921
(
2004
).
10.
M. V.
Averiyanov
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
Ph.
Blanc-Benon
, and
R. O.
Cleveland
, “
Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media
,”
Acoust. Phys.
52
,
623
632
(
2006
).
11.
M. V.
Averiyanov
, “
Non linear diffraction effects in propagation of sound waves through turbulent atmosphere: Experimental and theoretical studies
,” Ph.D. thesis,
Ecole Centrale de Lyon/Moscou State University
,
2008
.
12.
P.
Blanc-Benon
,
S.
Ollivier
,
K.
Attenborough
, and
Q.
Qin
, “
Laboratory experiments to study N-waves propagation: Effects of turbulence and/or ground roughness
,” in
17th International Symposium on Nonlinear Acoustics
,
Manchester, UK
(
2005
), Vol.
838
, pp.
651
654
.
13.
V.
Grillon
,
X.
Meynial
, and
J. D.
Polack
, “
What can auralisation in small scale models achieve?
,”
Acta Acust.
82
,
362
364
(
1996
).
14.
J.
Picaut
and
L.
Simon
, “
A scale model experiment for the study of sound propagation in urban areas
,”
Appl. Acoust
.
62
,
327
340
(
2001
).
15.
M.
Almgren
, “
Acoustic boundary layer influence on scale model simulation of sound propagation: Experimental verification
,”
J. Sound Vib.
110
,
247
259
(
1986
).
16.
A.
Loubeau
,
V. W.
Sparrow
,
L. L.
Pater
, and
W. M.
Wright
, “
High-frequency measurements of blast wave propagation
,”
J. Acoust. Soc. Am.
120
,
EL29
EL35
(
2006
).
17.
W. M.
Wright
and
J. L.
McKittrick
, “
Diffraction of spark-produced acoustic impulses
,”
Am. J. Phys.
35
,
124
128
(
1967
).
18.
W. M.
Wright
and
N. W.
Medendorp
, “
Acoustic radiation from a finite line source with N-wave excitation
,”
J. Acoust. Soc. Am.
43
,
966
971
(
1968
).
19.
M. V.
Averiyanov
,
P. V.
Yuldashev
,
V. A.
Khokhlova
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Nonlinear propagation of spark-generated N-waves in relaxing atmosphere: Laboratory-scaled experiments and theoretical study
,” in
13th AIAA/CEAS Aeroacoustics Conference, AIAA-2007–
(
2007
).
20.
S.
Fidell
,
L.
Silvati
, and
K.
Pearsons
, “
Relative rates of growth of annoyance of impulsive and non-impulsive noises
,”
J. Acoust. Soc. Am.
111
,
576
585
(
2002
).
21.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
(
Springer-Verlag
,
Heidelberg
,
2001
), pp.
6
14
, 143–158, 277.
22.
W.
Merzkirch
,
Flow Visualization
(
Academic Press
,
New York and London
,
1974
), pp.
126
134
.
23.
P. V.
Yuldashev
,
M. V.
Averiyanov
,
V. A.
Khokhlova
,
O. A.
Sapozhnikov
,
O.
Sebastien
, and
P.
Blanc-Benon
, “
Nonlinear propagation of spark-generated N-waves in atmosphere: Theoretical and experimental assessment of the shock front structure
,”
J. Acoust. Soc. Am.
123
,
3248
(
2008
).
24.
G. R.
Cowan
and
D. F.
Hornig
, “
The experimental determination of the thickness of a shock front in a gas
,”
J. Chem. Phys.
18
,
1008
1018
(
1950
).
25.
E. F.
Greene
,
G. R.
Cowan
, and
D. F.
Hornig
, “
The thickness of shock fronts in argon and nitrogen and rotational heat capacity lags
,”
J. Chem. Phys.
19
,
427
434
(
1951
).
26.
J.
Panda
and
G.
Adamovsky
, “
Laser light scattering by shock waves
,”
Phys. Fluids
7
,
2271
2279
(
1995
).
27.
J.
Panda
, “
Wide angle light scattering in shock-laser interaction
,”
AIAA J.
33
,
2429
2431
(
1995
).
28.
M. J.
Hargather
and
G. S.
Settles
, “
Optical measurement and scaling of blasts from gram-range explosive charges
,”
Shock Waves
17
,
215
223
(
2007
).
29.
G.
Smeets
, “
Laser interference microphone for ultrasonics and nonlinear acoustics
,”
J. Acoust. Soc. Am.
61
,
872
875
(
1977
).
30.
Y. A.
Kravtsov
and
Y. I.
Orlov
,
Geometrical Optics of Inhomogeneous Media
(
Springer-Verlag
,
Berlin
,
1990
), pp.
7
33
.
31.
J. W.
Goodman
,
Introduction to Fourier Optics
, 2nd ed. (
McGraw-Hill
,
New York
,
1996
), pp.
36
38
.
32.
O. V.
Rudenko
and
S. I.
Soluyan
,
Theoretical Foundations of Nonlinear Acoustics
(
Consultants Bureau
,
New York
,
1977
), pp.
42
64
.
33.
R. O.
Cleveland
,
M. F.
Hamilton
, and
D. T.
Blackstock
, “
Time-domain modeling of finite-amplitude sound in relaxing fluids
,”
J. Acoust. Soc. Am.
99
,
3312
3318
(
1996
).
34.
A. D.
Pierce
,
Acoustics: An Introduction to its Physical Principles and Applications
(
McGraw-Hill
,
New York
,
1981
), pp.
547
554
,
566
578
.
35.
W. F.
Ames
,
Numerical Methods for Partial Differential Equations
, 3rd ed. (
Academic
,
San Diego
,
1992
), pp.
307
310
.
36.
A.
Kurganov
and
E.
Tadmor
, “
New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations
,”
J. Comput. Phys.
160
,
241
282
(
2000
).
You do not currently have access to this content.