Coated microbubbles, unlike tissue are able to scatter sound subharmonically. Therefore, the subharmonic behavior of coated microbubbles can be used to enhance the contrast in ultrasound contrast imaging. Theoretically, a threshold amplitude of the driving pressure can be calculated above which subharmonic oscillations of microbubbles are initiated. Interestingly, earlier experimental studies on coated microbubbles demonstrated that the threshold for these bubbles is much lower than predicted by the traditional linear viscoelastic shell models. This paper presents an experimental study on the subharmonic behavior of differently sized individual phospholipid coated microbubbles. The radial subharmonic response of the microbubbles was recorded with the Brandaris ultra high-speed camera as a function of both the amplitude and the frequency of the driving pulse. Threshold pressures for subharmonic generation as low as 5 kPa were found near a driving frequency equal to twice the resonance frequency of the bubble. An explanation for this low threshold pressure is provided by the shell buckling model proposed by Marmottant et al [J. Acoust. Soc. Am.118, 3499

3505
(2005)]. It is shown that the change in the elasticity of the bubble shell as a function of bubble radius as proposed in this model, enhances the subharmonic behavior of the microbubbles.

1.
F.
Forsberg
,
D. A.
Merton
,
J. B.
Liu
,
L.
Needleman
, and
B. B.
Goldberg
, “
Clinical applications of ultrasound contrast agents
,”
Ultrasonics
36
,
695
701
(
1998
).
2.
T.
Albrecht
and
J.
Hohmann
, “
Ultrasound contrast agents
,”
Radiologe
43
,
793
804
(
2003
).
3.
F. B.
Feinstein
, “
The powerful microbubble: From bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond
,”
Am. J. Physiol. Heart Circ. Physiol.
287
,
H450
457
(
2004
).
4.
B. A.
Kaufmann
and
J. R.
Lindner
, “
Molecular imaging with targeted contrast ultra sound
,”
Curr. Opin. Biotechnol.
18
,
11
16
(
2007
).
5.
A.
Bouakaz
,
S.
Frigstad
,
F. J.
ten Cate
, and
N.
de Jong
, “
Super harmonic imaging: A new imaging technique for improved contrast detection
,”
Ultrasound Med. Biol.
28
,
59
68
(
2002
).
6.
V.
Mor-Avi
,
E. G.
Caiani
,
K. A.
Collins
,
C. E.
Korcarz
,
J. E.
Bednarz
, and
R. M.
Lang
, “
Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images
,”
Circulation
104
,
352
357
(
2001
).
7.
D. H.
Simpson
,
C. T.
Chin
, and
P. N.
Burns
, “
Pulse inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
372
382
(
1999
).
8.
P. J. A.
Frinking
,
A.
Bouakaz
,
J.
Kirkhorn
,
F. J.
ten Cate
, and
N.
de Jong
, “
Ultrasound contrast imaging: Current and new potential methods
,”
Ultrasound Med. Biol.
26
,
965
975
(
2000
).
9.
P.
Rafter
,
P.
Phillips
, and
M. A.
Vannan
, “
Imaging technologies and techniques
,”
Cardiol. Clin.
22
,
181
197
(
2004
).
10.
P. M.
Shankar
,
P. D.
Krishna
, and
V. L.
Newhouse
, “
Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement
,”
Ultrasound Med. Biol.
24
,
395
399
(
1998
).
11.
D. E.
Goertz
,
M. E.
Frijlink
,
N.
de Jong
, and
A. F. W.
van der Steen
, “
High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent
,”
Ultrasound Med. Biol.
32
,
569
577
(
2006
).
12.
D. E.
Goertz
,
M. E.
Frijlink
,
D.
Tempel
,
V.
Bhagwandas
,
A.
Gisolf
,
R.
Krams
,
N.
de Jong
, and
A. F. W.
van der Steen
, “
Subharmonic contrast intravascular ultrasound for vasa vasorum imaging
,”
Ultrasound Med. Biol.
33
,
1859
1872
(
2007
).
13.
R.
Esche
, “
Investigations on oscillating cavities in liquids
,”
Acustica
2
,
208
218
(
1952
).
14.
E. A.
Neppiras
, “
Subharmonic and other low-frequency emission from bubbles in sound-irradiated liquids
,”
J. Acoust. Soc. Am.
46
,
587
601
(
1969
).
15.
P.
de Santis
,
D.
Sette
, and
F.
Wanderlingh
, “
Cavitation detection: The use of the subharmonics
,”
J. Acoust. Soc. Am.
42
,
514
516
(
1967
).
16.
A.
Eller
and
H. G.
Flynn
, “
Generation of subharmonics of order one-half by bubbles in a sound field
,”
J. Acoust. Soc. Am.
46
,
722
727
(
1969
).
17.
A. I.
Eller
, “
Subharmonic response of bubbles to underwater sound
,”
J. Acoust. Soc. Am.
55
,
871
873
(
1974
).
18.
A.
Prosperetti
, “
Nonlinear oscillations of gas bubbles in liquids: Steady-state solutions
,”
J. Acoust. Soc. Am.
56
,
878
885
(
1974
).
19.
A.
Prosperetti
, “
Nonlinear oscillations of gas bubbles in liquids. Transient solutions and the connection between subharmonic signal and cavitation
,”
J. Acoust. Soc. Am.
57
,
810
821
(
1975
).
20.
W.
Lauterborn
, “
Numerical investigation of nonlinear oscillations of gas bubbles in liquids
,”
J. Acoust. Soc. Am.
59
,
283
293
(
1976
).
21.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
22.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
,
London
,
1994
).
23.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
Oxford
,
1995
).
24.
M.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
Single-bubble sonoluminescence
,”
Rev. Mod. Phys.
74
,
425
484
(
2002
).
25.
A.
Prosperetti
, “
Application of the subharmonic threshold to the measurement of the damping of oscillating gas bubbles
,”
J. Acoust. Soc. Am.
61
,
11
16
(
1977
).
26.
N.
de Jong
and
L.
Hoff
, “
Ultrasound scattering properties of Albunex microspheres
,”
Ultrasonics
31
,
175
181
(
1993
).
27.
K.
Sarkar
,
W. T.
Shi
,
D.
Chatterjee
, and
F.
Forsberg
, “
Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
,”
J. Acoust. Soc. Am.
118
,
539
550
(
2005
).
28.
S.
van der Meer
,
B.
Dollet
,
M.
Voormolen
,
C. T.
Chin
,
A.
Bouakaz
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
,
648
656
(
2007
).
29.
P. M.
Shankar
,
P. D.
Krishna
, and
V. L.
Newhouse
, “
Subharmonic backscattering from ultrasound contrast agents
,”
J. Acoust. Soc. Am.
106
,
2104
2110
(
1999
).
30.
C. C.
Church
, “
The effect of an elastic solid surface layer on the radial pulsations of gas bubbles
,”
J. Acoust. Soc. Am.
97
,
1510
1521
(
1995
).
31.
L.
Hoff
,
P. C.
Sontum
, and
J. M.
Hovem
, “
Oscillations of polymeric microbubbles: Effect of the encapsulating shell
,”
J. Acoust. Soc. Am.
107
,
2272
2280
(
2000
).
32.
O.
Lotsberg
,
J. M.
Hovem
, and
B.
Aksum
, “
Experimental observation of subharmonic oscillations in Infoson bubbles
,”
J. Acoust. Soc. Am.
99
,
1366
1369
(
1996
).
33.
P. D.
Krishna
,
P. M.
Shankar
, and
V. L.
Newhouse
, “
Subharmonic generation from ultrasonic contrast agents
,”
Phys. Med. Biol.
44
,
681
694
(
1999
).
34.
P. H.
Chang
,
K. K.
Shung
,
S.
Wu
, and
H. B.
Levene
, “
Second harmonic imaging and harmonic Doppler measurements with Albunex
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
1020
1027
(
1995
).
35.
E.
Biagi
,
L.
Breschi
,
E.
Vannacci
, and
L. A.
Masotti
, “
Stable and transient subharmonic emissions from isolated contrast agent microbubbles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
480
497
(
2007
).
36.
G.
Bhagavatheeshwaran
,
W. T.
Shi
,
F.
Forsberg
, and
P. M.
Shankar
, “
Subharmonic signal generation from contrast agents in simulated neovessels
,”
Ultrasound Med. Biol.
30
,
199
203
(
2004
).
37.
E.
Kimmel
,
B.
Krasovitski
,
A.
Hoogi
,
D.
Razansky
, and
D.
Adam
, “
Subharmonic response of encapsulated microbubbles: Conditions for existence and amplification
,”
Ultrasound Med. Biol.
33
,
1767
1776
(
2007
).
38.
P.
Marmottant
,
S.
van der Meer
,
M.
Emmer
,
M.
Versluis
,
N.
de Jong
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
(
2005
).
39.
C. T.
Chin
,
C.
Lancée
,
J.
Borsboom
,
F.
Mastik
,
M. E.
Frijlink
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames
,”
Rev. Sci. Instrum.
74
,
5026
5034
(
2003
).
40.
C.
Devin
, Jr.
, “
Survey of thermal, radiation and viscous damping of pulsating bubbles
,”
J. Acoust. Soc. Am.
31
,
1654
1667
(
1959
).
41.
H.
Medwin
, “
Counting bubbles acoustically: A review
,”
Ultrasonics
15
,
7
13
(
1977
).
42.
M.
Overvelde
,
V.
Garbin
,
J.
Sijl
,
B.
Dollet
,
N.
de Jong
,,
D.
Lohse
, and
M.
Versluis
, “
Nonlinear shell behavior of phospholipid-coated microbubbles
,”
Ultrasound Med. Biol.
(
2010
, in print).
43.
X.
Wen
and
E. I.
Franses
, “
Adsorption of bovine serum albumin at the air/water interface and its effect on the formation of DPPC surface film
,”
Colloids Surf., A
190
,
319
332
(
2001
).
44.
C. C.
Cheng
and
C. -H.
Chang
, “
Retardation effect of tyloxapol on inactivation of dipalmitoyl phosphatidylcholine surface activity by albumin
,”
Langmuir
16
,
437
441
(
2000
).
45.
J.
Sijl
,
E.
Gaud
,
P. J. A.
Frinking
,
M.
Arditi
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
, “
Acoustic characterization of single ultrasound contrast agent microbubbles
,”
J. Acoust. Soc. Am.
124
,
4091
4097
(
2008
).
46.
V.
Garbin
,
D.
Cojoc
,
E.
Ferrari
,
E.
Di Fabrizio
,
M. L. J.
Overvelde
,
S. M.
van der Meer
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
, “
Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging
,”
Appl. Phys. Lett.
90
,
114103
(
2007
).
47.
B.
Dollet
,
S.
van der Meer
,
V.
Garbin
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
, “
Nonspherical oscillations of ultrasound contrast agent microbubbles
,”
Ultrasound Med. Biol.
34
,
1465
1473
(
2008
).
48.
S.
Hilgenfeldt
,
D.
Lohse
, and
M.
Zomack
, “
Response of bubbles to diagnostic ultrasound: A unifying theoretical approach
,”
Eur. Phys. J. B
4
,
247
255
(
1998
).
49.
N.
de Jong
,
M.
Emmer
,
C. T.
Chin
,
A.
Bouakaz
,
F.
Mastik
,
D.
Lohse
, and
M.
Versluis
, “
‘Compression-only’ behavior of phospholipid-coated contrast bubbles
,”
Ultrasound Med. Biol.
33
,
653
656
(
2007
).
50.
J.
Sijl
,
M.
Overvelde
,
B.
Dollet
,
V.
Garbin
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
, “
‘Compression-only’ behavior: A second order nonlinear response of ultrasound contrast agent microbubbles
,”
J. Acoust. Soc. Am.
(
2010
, in print).
51.
M. I.
Sández
,
A.
Suárez
, and
A.
Gil
, “
Surface pressure-area isotherms and fluorescent behavior of phospholipids containing labeled pyrene
,”
J. Colloid Interface Sci.
250
,
128
133
(
2002
).
52.
F.
Pétriat
,
E.
Roux
,
J. C.
Leroux
, and
S.
Giasson
, “
Study of molecular interactions between a phospholipidic layer and a pH-sensitive polymer using the Langmuir balance technique
,”
Langmuir
20
,
1393
1400
(
2004
).
53.
R.
Veldhuizen
,
K.
Nag
,
S.
Orgeig
, and
F.
Possmayer
, “
The role of lipids in pulmonary surfactant
,”
Biochim. Biophys. Acta
1408
,
90
108
(
1998
).
54.
G.
Enhorning
, “
Pulsating bubble technique for evaluating pulmonary surfactant
,”
J. Appl. Physiol.
43
,
198
203
(
1977
).
55.
P. J. A.
Frinking
,
E.
Gaud
,
J.
Brochot
, and
M.
Arditi
, “
Subharmonic scattering of phospholipid-shell microbubbles at low acoustic pressure amplitudes
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
1762
1771
(
2010
).
You do not currently have access to this content.