In the first part of the paper, a single degree-of-freedom model of a vibrating membrane with piezoelectric inserts is introduced and is initially applied to the case when a plane wave is incident with frequency close to one of the resonance frequencies. The model is a prototype of a device which converts ambient acoustical energy to electrical energy with the use of piezoelectric devices. The paper then proposes an enhancement of the energy harvesting process using a nonlinear processing of the output voltage of piezoelectric actuators, and suggests that this improves the energy conversion and reduces the sensitivity to frequency drifts. A theoretical discussion is given for the electrical power that can be expected making use of various models. This and supporting experimental results suggest that a nonlinear optimization approach allows a gain of up to 10 in harvested energy and a doubling of the bandwidth. A model is introduced in the latter part of the paper for predicting the behavior of the energy-harvesting device with changes in acoustic frequency, this model taking into account the damping effect and the frequency changes introduced by the nonlinear processes in the device.

1.
J. M.
Kahn
,
R. H.
Katz
, and
K. S. J.
Pister
, “
Next century challenges: Mobile networking for smart dust
,”
Proceedings of the Mobicom
(
1999
), pp.
483
492
.
2.
J.
Krikke
, “
Sunrise for energy harvesting products
,”
IEEE Pervasive Comput.
4
,
4
35
(
2005
).
3.
J. A.
Paradiso
and
T.
Starner
, “
Energy scavenging for mobile and wireless electronics
,”
IEEE Pervasive Comput.
4
,
18
27
(
2005
).
4.
Y.
Hamakawa
, “
30 years trajectory of a solar photovoltaic research
,” in the
3rd World Conference on Photovoltaic Energy Conversion
(
2003
).
5.
C.
Shearwood
and
R. B.
Yates
, “
Development of an electromagnetic microgenerator
,”
Electron. Lett.
33
,
1883
1884
(
1997
).
6.
H. A.
Sodano
,
G. E.
Simmers
,
R.
Dereux
, and
D. J.
Inman
, “
Recharging batteries using energy harvested from thermal gradients
,”
J. Intell. Mater. Syst. Struct.
18
,
3
10
(
2006
).
7.
D.
Guyomar
,
G.
Sebald
,
S.
Pruvost
,
M.
Lallart
,
A.
Khodayari
, and
C.
Richard
, “
Energy harvesting from ambient vibrations and heat
,”
J. Intell. Mater. Syst. Struct.
20
,
609
624
(
2009
).
8.
S. R.
Anton
and
H. A.
Sodano
, “
A review of power harvesting using piezoelectric materials (2003-2006)
,”
Smart Mater. Struct.
16
,
025009
(
2007
).
9.
H. A.
Sodano
,
D. J.
Inman
, and
G.
Park
, “
A review of power harvesting from vibration using piezoelectric materials
,”
Shock Vib. Dig.
36
,
197
205
(
2004
).
10.
N. G.
Stephen
, “
On energy harvesting from ambient vibration
,”
J. Sound Vib.
293
,
409
425
(
2006
).
11.
J. A.
Paradiso
and
M.
Feldmeier
, “
A compact, wireless, self-powered pushbutton controller
,”
Proceedings of the Ubicomp2001
(
2001
), pp.
299
304
.
12.
D.
Guyomar
,
Y.
Jayet
,
L.
Petit
,
E.
Lefeuvre
,
T.
Monnier
,
C.
Richard
, and
M.
Lallart
, “
Synchronized switch harvesting applied to self-powered smart systems: Piezoactive microgenerators for autonomous wireless transmitters
,”
Sens. Actuators, A
138
,
151
160
(
2007
).
13.
M.
Lallart
,
D.
Guyomar
,
Y.
Jayet
,
L.
Petit
,
E.
Lefeuvre
,
T.
Monnier
,
P.
Guy
, and
C.
Richard
, “
Synchronized switch harvesting applied to selfpowered smart systems: Piezoactive microgenerators for autonomous wireless receiver
,”
Sens. Actuators, A
147
,
263
272
(
2008
).
14.
A.
Badel
,
E.
Lefeuvre
,
C.
Richard
, and
D.
Guyomar
, “
Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion
,”
J. Intell. Mater. Syst. Struct.
16
,
889
901
(
2005
).
15.
D.
Guyomar
,
A.
Badel
,
E.
Lefeuvre
, and
C.
Richard
, “
Towards energy harvesting using active materials and conversion improvement by nonlinear processing
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
584
595
(
2005
).
16.
S. B.
Horowitz
,
M.
Sheplak
,
L. N.
Cattafesta
 III
, and
T.
Nishida
, “
A MEMS acoustic energy harvester
,”
J. Micromech. Microeng.
16
,
S174
S181
(
2006
).
17.
F.
Liu
,
A.
Phipps
,
S.
Horowitz
,
K.
Ngob
,
L.
Cattafesta
,
T.
Nishida
, and
M.
Sheplak
, “
Acoustic energy harvesting using an electromechanical Helmholtz resonator
,”
J. Acoust. Soc. Am.
123
,
1983
1990
(
2008
).
18.
A.
Badel
,
G.
Sebald
,
D.
Guyomar
,
M.
Lallart
,
E.
Lefeuvre
,
C.
Richard
, and
J.
Qiu
, “
Wide band semi-active piezoelectric vibration control by synchronized switching on adaptive continuous voltage sources
,”
J. Acoust. Soc. Am.
119
,
2815
2825
(
2006
).
19.
D.
Guyomar
,
A.
Faiz
,
L.
Petit
, and
C.
Richard
, “
Wave reflection and transmission reduction using a piezoelectric semipassive nonlinear technique
,”
J. Acoust. Soc. Am.
119
,
285
298
(
2006
).
20.
M.
Lallart
and
D.
Guyomar
, “
An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output
,”
Smart Mater. Struct.
17
,
035030
(
2008
).
21.
A.
Badel
,
M.
Lagache
,
D.
Guyomar
,
E.
Lefeuvre
, and
C.
Richard
, “
Finite element and simple lumped modeling for flexural nonlinear semi-passive damping
,”
J. Intell. Mater. Syst. Struct.
18
,
727
742
(
2007
).
22.
C.
Richard
,
D.
Guyomar
, and
E.
Lefeuvre
, “
Self-powered electronic breaker with automatic switching by detecting maxima or minima of potential difference between its power electrodes
,” Patent No. PCT/FR2005/003000 (07/06/
2007
).
23.
M.
Lallart
,
E.
Lefeuvre
,
C.
Richard
, and
D.
Guyomar
, “
Self-powered circuit for broadband, multimodal piezoelectric vibration control
,”
Sens. Actuators, A
143
,
277
282
(
2007
).
You do not currently have access to this content.