This paper describes the acoustic properties of a range of epoxy resins prepared by photocuring that are suitable for application in piezoelectric ultrasonic transducer matching layers. Materials, based on blends of diglycidyl ether of Bisphenol A and 1,4-cyclohexanedimethanol diglycidyl ether, are described. Furthermore, in order to vary the elastic character of the base resin, samples containing polymer microspheres or barium sulfate particles are also described. The acoustic properties of the materials are determined by a liquid coupled through transmission methodology, capable of determining the velocity and attenuation of longitudinal and shear waves propagating in an isotropic layer. Measured acoustic properties are reported which demonstrate materials with specific acoustic impedance varying in the range 0.88–6.25 MRayls. In the samples comprising blends of resin types, a linear variation in the acoustic velocities and density was observed. In the barium sulfate filled samples, acoustic impedance showed an approximately linear variation with composition, reflecting the dominance of the density variation. While such variations can be predicted by simple mixing laws, relaxation and scattering effects influence the attenuation in both the blended and filled resins. These phenomena are discussed with reference to dynamic mechanical thermal analysis and differential scanning calorimetry of the samples.

1.
C. S.
DeSilets
,
J. D.
Fraser
, and
G. S.
Kino
, “
The design of efficient broad-band piezoelectric transducers
,”
IEEE Trans. Sonics Ultrason.
25
,
115
125
(
1978
).
2.
J. M.
Cannata
,
T. A.
Ritter
,
W. H.
Chen
,
R. H.
Silverman
, and
K. K.
Shung
, “
Design of efficient, broadband single element (20–80 MHz) ultrasonic transducers for medical imaging applications
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
1548
1557
(
2003
).
3.
T.
Yano
,
M.
Tone
, and
A.
Fukumoto
, “
Range finding and surface characterization using high frequency air transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
34
,
232
236
(
1987
).
4.
S. P.
Kelly
,
G.
Hayward
, and
T. E. G.
Alvarez-Arenas
, “
Characterization and assessment of an integrating matching layer for air-coupled ultrasonic applications
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
1314
1323
(
2004
).
5.
O.
Krauß
,
R.
Gerlach
, and
J.
Fricke
, “
Experimental and theoretical investigations of SiO2-aerogel matched piezoelectric transducers
,”
Ultrasonics
32
,
217
222
(
1994
).
6.
T. E.
Gómez
,
F.
Montero
,
E.
Rodriguez
,
A.
Roig
, and
E.
Molins
, “
Fabrication and characterisation of silica aerogel films for air-coupled piezoelectric transducers in the megahertz range
,” in
Proceedings of the 2002 IEEE Ultrasonics Symposium
(
2002
), pp.
1107
1110
.
7.
P. C.
Pedersen
,
O.
Tretiak
, and
P.
He
, “
Impedance-matching properties of an inhomogeneous matching layer with continuously changing acoustic impedance
,”
J. Acoust. Soc. Am.
72
,
327
336
(
1982
).
8.
S. N.
Ramadas
,
G.
Hayward
,
R. L.
O’Leary
,
T.
McCunnie
,
A. J.
Mulholland
,
A.
Trogé
,
R. A.
Pethrick
,
D.
Robertson
, and
V.
Murray
, “
A three-port acoustic lattice model for piezoelectric transducers containing opposing zones of polarization
,” in
Proceedings of the 2006 IEEE International Ultrasonics Symposium
(
2006
), pp.
1899
1902
.
9.
A. J.
Mulholland
,
S. N.
Ramadas
,
R. L.
O’Leary
,
A. C. S.
Parr
,
G.
Hayward
,
A.
Trogé
, and
R. A.
Pethrick
, “
Enhancing the performance of piezoelectric ultrasound transducers by the use of multiple matching layers
,”
IMA J. Appl. Math.
73
,
936
949
(
2008
).
10.
H.
Tohmyoh
, “
Polymer acoustic matching layer for broadband ultrasonic applications
,”
J. Acoust. Soc. Am.
120
,
31
34
(
2006
).
11.
R. L.
O’Leary
,
A. C. S.
Parr
,
G.
Hayward
, and
G.
Smillie
, “
CUE materials database
,” http://www.cue.ac.uk/cue_materials_database_ver1.2_aug_200 5.pdf (Last viewed 5/17/2010).
12.
M. G.
Grewe
,
T. R.
Gururaja
,
T. R.
Shrout
, and
R. E.
Newnham
, “
Acoustic properties of particle/polymer composites for ultrasonic transducer backing applications
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
506
514
(
1990
).
13.
H.
Wang
,
T. A.
Ritter
,
W.
Cao
, and
K. K.
Shung
, “
High frequency properties of passive materials for ultrasonic transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
48
,
78
84
(
2001
).
14.
K.
Saito
,
K.
Yamaguchi
, and
M.
Kawabuchi
, “
Piezoelectric ultrasonic probe using and epoxy resin and iron carbonyl acoustic matching layer
,” U.S. Patent No. 4,616,152 (7 October
1986
).
15.
A.
Trogé
, “
A new range of ultrasonic transducers
,” Ph. D. thesis,
University of Strathclyde
, Glasgow, Scotland (
2007
).
16.
A. R.
Mackintosh
,
A. J. C.
Kuehne
,
R. A.
Pethrick
,
B.
Guilhabert
,
E.
Gu
,
C. L.
Lee
,
M. D.
Dawson
,
G.
Heliotis
, and
D. D. C.
Bradley
, “
Novel polymer systems for deep UV microlens arrays
,”
J. Phys. D: Appl. Phys.
41
,
094007
(
2008
).
17.
S.
Dixon
,
D.
Jacques
,
S. D.
Palmer
, and
G.
Rowlands
, “
The measurement of shear and compression waves in curing epoxy adhesives using ultrasonic reflection and transmission techniques simultaneously
,”
Meas. Sci. Technol.
15
,
939
947
(
2004
).
18.
F.
El-Tantawy
and
Y. K.
Sung
, “
A novel ultrasonic transducer backing from porous epoxy resin–titanium–silane coupling agent and plasticizer composites
,”
Mater. Lett.
58
,
154
158
(
2004
).
19.
B.
Faiz
,
G.
Maze
,
D.
Decoultot
,
A.
Moudden
,
E. H.
Assif
, and
M.
Ezzaidi
, “
Ultrasonic characterization of the quality of an epoxy resin polymerization
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
46
,
188
196
(
1999
).
20.
S.
Dixon
and
B.
Lanyon
, “
Phase change measurement of ultrasonic shear waves on reflection from a curing epoxy system
,”
J. Phys. D: Appl. Phys.
38
,
4115
4125
(
2005
).
21.
L. G.
Bunton
,
J. H.
Daly
,
I. D.
Maxwell
, and
R. A.
Pethrick
, “
Investigation of cure in epoxy-resins—ultrasonic and thermally stimulated current measurements
,”
J. Appl. Polym. Sci.
27
,
4283
4294
(
1982
).
22.
M.
Frigione
,
A.
Maffezzoli
,
D.
Acierno
,
V.
Luprano
, and
G.
Montagna
, “
Nondestructive and in-situ monitoring of mechanical property build up in epoxy adhesives for civil applications by propagation of ultrasonic waves
,”
Polym. Eng. Sci.
40
,
656
664
(
2000
).
23.
K.
Liang
,
H.
Kunkel
,
C.
Oakley
, and
W.
Huebner
, “
Acoustic characterization of ultrasonic transducer materials: I. Blends of rigid and flexible epoxy resins used in piezocomposites
,”
Ultrasonics
36
,
979
986
(
1998
).
24.
R. E.
Montgomery
,
F. J.
Weber
,
D. F.
White
, and
C. M.
Thompson
, “
On the development of acoustically transparent structural plastics
,”
J. Acoust. Soc. Am.
71
,
735
741
(
1982
).
25.
J.
Krautkrämer
and
H.
Krautkrämer
,
Ultrasonic Testing of Materials
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1977
), pp.
528
550
.
26.
V. A.
Shutilov
,
Fundamental Physics of Ultrasound
(
Gordon and Breach Science
,
New York
,
1988
), pp.
211
216
.
27.
R. J.
Freemantle
and
R. E.
Challis
, “
Combined compression and shear wave ultrasonic measurements on curing adhesive
,”
Meas. Sci. Technol.
9
,
1291
1302
(
1998
).
28.
R. L.
O’Leary
, “
An investigation into the passive polymer materials utilised in the construction of piezoelectric composite transducers
,” Ph.D. thesis,
University of Strathclyde
, Glasgow, Scotland (
2003
).
29.
B. A.
Auld
,
Acoustic Fields and Waves in Solids 1
(
Krieger
,
Malabar, FL
,
1990
), pp.
86
99
.
30.
H.
Kolsky
,
Stress Waves in Solids
(
Dover
,
New York
,
1963
), pp.
116
122
.
31.
A. R.
,
Selfridge
, “
Approximate material properties in isotropic materials
,”
IEEE Trans. Sonics Ultrason.
32
,
381
394
(
1985
).
32.
L. M.
Brekhovskikh
and
O. A.
Godin
,
Acoustics of Layered Media I
, 2nd ed. (
Springer
,
Berlin
,
1998
), pp.
94
98
.
33.
J. R.
Taylor
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
(
University Science Books
,
Sausalito, CA
,
1997
), pp.
45
91
.
34.
A. C. S.
Parr
,
R. L.
O’Leary
, and
G.
Hayward
, “
Improving the thermal stability of piezoelectric composite transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
550
563
(
2005
).
35.
J.
Heijboer
, “
The movement of the cyclohexyl group in glassy polymers
,”
Kolloid-Z.
171
,
7
15
(
1960
).
36.
P. K.
Datta
and
R. A.
Pethrick
, “
Ultrasonic studies of glass-filled polymer solids
,”
J. Phys. D: Appl. Phys.
13
,
153
161
(
1980
).
37.
R. E.
Challis
,
A. K.
Holmes
,
J. S.
Tebbutt
, and
R. P.
Cocker
, “
Scattering of ultrasonic compression waves by particulate filler in a cured epoxy continuum
,”
J. Acoust. Soc. Am.
103
,
1413
1420
(
1998
).
38.
Y.
Yamashita
,
Y.
Hosono
, and
K.
Itsumi
, “
Effects of metal particle dopant on acoustic attenuation properties of silicone rubber lens for medical echo array probe
,”
Jpn. J. Appl. Phys., Part 1
44
,
4558
4560
(
2005
).
39.
Y.
Hosono
,
Y.
Yamashita
, and
K.
Itsumi
, “
Effects of fine metal oxide particle dopant on the acoustic properties of silicone rubber lens for medical array probe
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
1589
1595
(
2007
).
40.
T. E.
Gómez Alvarez-Arenas
,
A. J.
Mulholland
,
G.
Hayward
, and
J.
Gomatam
, “
Wave propagation in 0–3/3–3 connectivity composites with complex microstructure
,”
Ultrasonics
38
,
897
907
(
2000
).
You do not currently have access to this content.