The aim of this study was to investigate whether distortion product otoacoustic emissions (DPOAEs) are a suitable means for detecting changes in outer hair cell (OHC) functionality due to exposure to three hours of discotheque music and whether efferent reflex strength of the medial olivocochlear bundle is able to predict the ear’s susceptibility to high-level noise. High-resolution DPOAEs (Δf2=47Hz) were recorded between 3.5 and 4.5 kHz at close-to-threshold primary tone levels. For comparison, high-resolution pure-tone audiometry was conducted in the same frequency range. Efferent reflex strength was measured by means of DPOAEs at a specific frequency with and without contralateral acoustic stimulation. A significant deterioration of more than 10 dB was found for pure-tone thresholds and DPOAE levels indicating that three hours of high-level noise exert a considerable influence on hearing capability and OHC functionality. A significant correlation between shifts in pure-tone threshold and shifts in DPOAE level occurred when removing data with differing calibration across measurements. There was no clear correlation between efferent reflex strength and shifts in pure-tone threshold or shifts in DPOAE level suggesting that the applied measures of efferent reflex strength may not be suitable for quantifying individual vulnerability to noise.

1.
Agrama
,
M. T.
,
Waxman
,
G. M.
,
Stagner
,
B. B.
,
Martin
,
G. K.
, and
Lonsbury-Martin
,
B. L.
(
1998
). “
Effects of efferent activation on distortion-product otoacoustic emissions in normal humans using ipsilateral acoustic stimulation
,”
Assoc. Res. Otolaryngol. Abstr.
21
,
152
.
2.
Backus
,
B. C.
, and
Guinan
,
J. J.
(
2007
). “
Measurement of the distribution of medial olivocochlear acoustic reflex strengths across normal-hearing individuals via otoacoustic emissions
,”
J. Assoc. Res. Otolaryngol.
8
,
484
496
.
3.
Bassim
,
M. K.
,
Miller
,
R. L.
,
Buss
,
E.
, and
Smith
,
D. W.
(
2003
). “
Rapid adaptation of the 2f1-f2 DPOAE in humans: Binaural and contralateral stimulation effects
,”
Hear. Res.
182
,
140
152
.
4.
Boege
,
P.
, and
Janssen
,
T.
(
2002
). “
Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears
,”
J. Acoust. Soc. Am.
111
,
1810
1818
.
5.
Brown
,
A. M.
,
Harris
,
F. P.
, and
Beveridge
,
H. A.
(
1996
). “
Two sources of acoustic distortion products from the human cochlea
,”
J. Acoust. Soc. Am.
100
,
3260
3267
.
6.
Brownell
,
W. E.
(
1990
). “
Outer hair cell electromotility and otoacoustic emissions
,”
Ear Hear.
11
,
82
92
.
7.
Campo
,
P.
,
Subramaniam
,
M.
, and
Henderson
,
D.
(
1991
). “
The effect of ‘conditioning’ exposures on hearing loss from traumatic exposure
,”
Hear. Res.
55
,
195
200
.
8.
Canlon
,
B.
,
Borg
,
E.
, and
Flock
,
A.
(
1988
). “
Protection against noise trauma by pre-exposure to a low level acoustic stimulus
,”
Hear. Res.
34
,
197
200
.
9.
Cody
,
A. R.
, and
Johnstone
,
B. M.
(
1982
). “
Temporary threshold shift modified by binaural acoustic stimulation
,”
Hear. Res.
6
,
199
205
.
10.
Collet
,
L.
,
Kemp
,
D. T.
,
Veuillet
,
E.
,
Duclaux
,
R.
,
Moulin
,
A.
, and
Morgon
,
A.
(
1990
). “
Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects
,”
Hear. Res.
43
,
251
261
.
11.
Engdahl
,
B.
(
1996
). “
Effects of noise and exercise on distortion product otoacoustic emissions
,”
Hear. Res.
93
,
72
82
.
12.
Engdahl
,
B.
, and
Kemp
,
D. T.
(
1996
). “
The effect of noise exposure on the details of distortion product otoacoustic emissions in humans
,”
J. Acoust. Soc. Am.
99
,
1573
1587
.
13.
European Union
(
2003
). “
Directive 2003/10/EC of the European Parliament and of the Council on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (noise)
,”
Official Journal of the European Union
L42
,
38
44
.
14.
Galambos
,
R.
(
1956
). “
Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea
,”
J. Neurophysiol.
19
,
424
437
.
15.
Gorga
,
M. P.
,
Neely
,
S. T.
,
Dorn
,
P. A.
, and
Hoover
,
B. M.
(
2003
). “
Further efforts to predict pure-tone thresholds from distortion product otoacoustic emission input/output functions
,”
J. Acoust. Soc. Am.
113
,
3275
3284
.
16.
Guinan
,
J. J.
, Jr.
(
1996
). “
Physiology of olivocochlear efferents
,” in
The Cochlea
, edited by
P.
Dallos
,
A.
Popper
, and
R.
Fay
(
Springer
,
New York
), pp.
435
502
.
17.
He
,
N.
, and
Schmiedt
,
R. A.
(
1993
). “
Fine structure of the 2f1-f2 acoustic distortion product: Changes with primary levels
,”
J. Acoust. Soc. Am.
94
,
2659
2669
.
18.
Heitmann
,
J.
,
Waldmann
,
B.
,
Schnitzler
,
H. U.
,
Plinkert
,
P. K.
, and
Zenner
,
H. P.
(
1998
). “
Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1-f2 removes DP-gram fine structure—Evidence for a secondary generator
,”
J. Acoust. Soc. Am.
103
,
1527
1531
.
19.
Janssen
,
T.
,
Boege
,
P.
,
Mikusch-Buchberg
,
J.
, and
Raczek
,
J.
(
2005
). “
Investigation of potential effects of cellular phones on human auditory function by means of distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
117
,
1241
1247
.
20.
Janssen
,
T.
,
Gehr
,
D. D.
, and
Kevanishvili
,
Z.
(
2003
). “
Contralateral DPOAE suppression in humans at very low sound intensities
,” in
Biophysics of the Cochlea: From Molecules to Models
, edited by
A. W.
Gummer
(
World Scientific
,
Singapore
), pp.
498
505
.
21.
Janssen
,
T.
,
Kummer
,
P.
, and
Arnold
,
W.
(
1998
). “
Growth behavior of the 2f1-f2 distortion product otoacoustic in tinnitus
,”
J. Acoust. Soc. Am.
103
,
3418
3430
.
22.
Job
,
A.
,
Raynal
,
M.
,
Kossowski
,
M.
,
Studler
,
M.
,
Ghernaouti
,
C.
,
Baffioni-Venturi
,
A.
,
Roux
,
A.
,
Darolles
,
C.
, and
Guelorget
,
A.
(
2009
). “
Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: A 3-year follow-up study
,”
Hear. Res.
251
,
10
16
.
23.
Kemp
,
D. T.
(
1986
). “
Otoacoustic emissions, travelling waves and cochlear mechanisms
,”
Hear. Res.
22
,
95
104
.
24.
Kim
,
D. O.
,
Dorn
,
P. A.
,
Neely
,
S. T.
, and
Gorga
,
M. P.
(
2001
). “
Adaptation of distortion product otoacoustic emissions in humans
,”
J. Assoc. Res. Otolaryngol.
2
,
31
40
.
25.
Kujawa
,
S. G.
, and
Liberman
,
M. C.
(
2001
). “
Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig
,”
J. Assoc. Res. Otolaryngol.
2
,
268
278
.
26.
Kummer
,
P.
,
Janssen
,
T.
, and
Arnold
,
W.
(
1995
). “
Suppression tuning characteristics of the 2f1-f2 distortion-product otoacoustic emissions in humans
,”
J. Acoust. Soc. Am.
98
,
197
210
.
27.
Kummer
,
P.
,
Janssen
,
T.
, and
Arnold
,
W.
(
1998
). “
The level and growth behavior of the 2f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss
,”
J. Acoust. Soc. Am.
103
,
3431
3444
.
28.
Kummer
,
P.
,
Janssen
,
T.
,
Hulin
,
P.
, and
Arnold
,
W.
(
2000
). “
Optimal L1-L2 primary tone level separation remains independent of test frequency in humans
,”
Hear. Res.
146
,
47
56
.
29.
Lapsley Miller
,
J. A.
,
Marshall
,
L.
,
Heller
,
L. M.
, and
Hughes
,
L. M.
(
2006
). “
Low-level otoacoustic emissions may predict susceptibility to noise-induced hearing loss
,”
J. Acoust. Soc. Am.
120
,
280
296
.
30.
Laroche
,
C.
,
Hétu
,
R.
, and
Poirier
,
S.
(
1989
). “
The growth of and recovery from TTS in human subjects exposed to impact noise
,”
J. Acoust. Soc. Am.
85
,
1681
1690
.
31.
Liberman
,
M. C.
, and
Guinan
,
J. J.
, Jr.
(
1998
). “
Feedback control of the auditory periphery: Anti-masking effects of middle ear muscle vs. olivocochlear efferents
,”
J. Commun. Disord.
31
,
471
483
.
32.
Liberman
,
M. C.
,
Puria
,
S.
, and
Guinan
,
J. J.
, Jr.
(
1996
). “
The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission
,”
J. Acoust. Soc. Am.
99
,
3572
3584
.
33.
Liebel
,
J.
,
Delb
,
W.
,
Andes
,
C.
, and
Koch
,
A.
(
1996
). “
Die Erfassung von Lärmschäden bei Besuchern einer Diskothek mit Hilfe der TEOAE und DPOAE (Detection of hearing loss in patrons of a discotheque using TEOAE and DPOAE)
,”
Laryngorhinootologie
75
,
259
264
.
34.
Lindgren
,
F.
, and
Axelsson
,
A.
(
1988
). “
The influence of physical exercise on susceptibility to noise-induced temporary threshold shift
,”
Scand. Audiol.
17
,
11
17
.
35.
Linss
,
V.
,
Emmerich
,
E.
,
Richter
,
F.
, and
Linss
,
W.
(
2005
). “
Is there a close relationship between changes in amplitudes of distortion product otoacoustic emissions and hair cell damage after exposure to realistic industrial noise in guinea pigs?
,”
Eur. Arch. Otorhinolaryngol.
262
,
488
495
.
36.
Maison
,
S. F.
, and
Liberman
,
M. C.
(
2000
). “
Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength
,”
J. Neurosci.
20
,
4701
4707
.
37.
Marshall
,
L.
,
Lapsley Miller
,
J. A.
, and
Heller
,
L. M.
(
2001
). “
Distortion-product otoacoustic emissions as a screening tool for noise-induced hearing loss
,”
Noise Health
3
,
43
60
.
38.
Marshall
,
L.
,
Lapsley Miller
,
J. A.
,
Heller
,
L. M.
,
Wolgemuth
,
K. S.
, and
Hughes
,
L. M.
(
2009
). “
Detecting incipient inner-ear damage from impulse noise with otoacoustic emissions
,”
J. Acoust. Soc. Am.
125
,
995
1013
.
39.
Mauermann
,
M.
, and
Kollmeier
,
B.
(
2004
). “
Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source
,”
J. Acoust. Soc. Am.
116
,
2199
2212
.
40.
McBride
,
D. I.
, and
Williams
,
S.
(
2001
). “
Audiometric notch as a sign of noise induced hearing loss
,”
Occup. Environ. Med.
58
,
46
51
.
41.
Mills
,
J. H.
,
Gilbert
,
R. M.
, and
Adkins
,
W. Y.
(
1979
). “
Temporary threshold shifts in humans exposed to octave bands of noise for 16 to 24 hours
,”
J. Acoust. Soc. Am.
65
,
1238
1248
.
42.
Moulin
,
A.
,
Collet
,
L.
, and
Duclaux
,
R.
(
1993
). “
Contralateral auditory stimulation alters acoustic distortion products in humans
,”
Hear. Res.
65
,
193
210
.
43.
Mountain
,
D. C.
(
1980
). “
Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics
,”
Science
210
,
71
72
.
44.
Müller
,
J.
, and
Janssen
,
T.
(
2004
). “
Similarity in loudness and distortion product otoacoustic emission input/output functions: Implications for an objective hearing aid adjustment
,”
J. Acoust. Soc. Am.
115
,
3081
3091
.
45.
Müller
,
J.
, and
Janssen
,
T.
(
2008
). “
Impact of occupational noise on pure-tone threshold and distortion product otoacoustic emissions after one workday
,”
Hear. Res.
246
,
9
22
.
46.
Müller
,
J.
,
Janssen
,
T.
,
Heppelmann
,
G.
, and
Wagner
,
W.
(
2005
). “
Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans
,”
J. Acoust. Soc. Am.
118
,
3747
3756
.
47.
National Institute for Occupational Safety and Health
(
1998
). “
Criteria for a recommended standard: Occupational noise exposure
,” DHHS (NIOSH) Publication No. 98-126.
48.
Neely
,
S. T.
,
Gorga
,
M. P.
, and
Dorn
,
P. A.
(
2003
). “
Cochlear compression estimates from measurements of distortion-product otoacoustic emissions
,”
J. Acoust. Soc. Am.
114
,
1499
1507
.
49.
Nieschalk
,
M.
,
Beneking
,
R.
, and
Stoll
,
W.
(
1997
). “
Die Pegelzunahme von Distorsionsproduktemissionen des Menschen durch kontralaterale Beschallung niedriger Intensität (Increased amplitude of distortion product emissions in the human caused by contralateral low intensity acoustic stimulation)
,”
HNO
45
,
378
384
.
50.
Nordmann
,
A. S.
,
Bohne
,
B. A.
, and
Harding
,
G. W.
(
2000
). “
Histopathological differences between temporary and permanent threshold shift
,”
Hear. Res.
139
,
13
30
.
51.
Patuzzi
,
R.
(
1998
). “
Exponential onset and recovery of temporary threshold shift after loud sound: Evidence for long-term inactivation of mechano-electrical transduction channels
,”
Hear. Res.
125
,
17
38
.
52.
Reiter
,
E. R.
, and
Liberman
,
M. C.
(
1995
). “
Efferent-mediated protection from acoustic overexposure: Relation to slow effects of olivocochlear stimulation
,”
J. Neurophysiol.
73
,
506
514
.
53.
Saunders
,
J. C.
,
Dear
,
S. P.
, and
Schneider
,
M. E.
(
1985
). “
The anatomical consequences of acoustic injury: A review and tutorial
,”
J. Acoust. Soc. Am.
78
,
833
860
.
54.
Schneider
,
M. E.
,
Belyantseva
,
I. A.
,
Azevedo
,
R. B.
, and
Kachar
,
B.
(
2002
). “
Rapid renewal of auditory hair bundles
,”
Nature (London)
418
,
837
838
.
55.
Seixas
,
N. S.
,
Goldman
,
B.
,
Sheppard
,
L.
,
Neitzel
,
R.
,
Norton
,
S.
, and
Kujawa
,
S. G.
(
2005
). “
Prospective noise induced changes to hearing among construction industry apprentices
,”
Occup. Environ. Med.
62
,
309
317
.
56.
Shera
,
C. A.
, and
Guinan
,
J. J.
, Jr.
(
1999
). “
Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs
,”
J. Acoust. Soc. Am.
105
,
782
798
.
57.
Siegel
,
J. H.
(
1994
). “
Ear-canal standing waves and high-frequency sound calibration using otoacoustic emission probes
,”
J. Acoust. Soc. Am.
95
,
2589
2597
.
58.
Sutton
,
L. A.
,
Lonsbury-Martin
,
B. L.
,
Martin
,
G. K.
, and
Whitehead
,
M. L.
(
1994
). “
Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: Time course of recovery and effects of lowering L2
,”
Hear. Res.
75
,
161
174
.
59.
Talmadge
,
C. L.
,
Long
,
G. R.
,
Tubis
,
A.
, and
Dhar
,
S.
(
1999
). “
Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
105
,
275
292
.
60.
Wagner
,
W.
,
Heppelmann
,
G.
,
Kühn
,
M.
,
Tisch
,
M.
,
Vonthein
,
R.
, and
Zenner
,
H. -P.
(
2005
). “
Olivocochlear activity and temporary threshold shift-susceptibility in humans
,”
Laryngoscope
115
,
2021
2028
.
61.
Wagner
,
W.
,
Heppelmann
,
G.
,
Müller
,
J.
,
Janssen
,
T.
, and
Zenner
,
H. -P.
(
2007
). “
Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips
,”
Hear. Res.
223
,
83
92
.
62.
Whitehead
,
M. L.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1992
). “
Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters
,”
J. Acoust. Soc. Am.
91
,
1587
1607
.
63.
Whitehead
,
M. L.
,
Stagner
,
B. B.
,
Lonsbury-Martin
,
B. L.
, and
Martin
,
G. K.
(
1995
). “
Effects of ear-canal standing waves on measurements of distortion-product otoacoustic emissions
,”
J. Acoust. Soc. Am.
98
,
3200
3214
.
64.
Wiederhold
,
M. L.
(
1970
). “
Variations in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory nerve-fiber responses to tone bursts
,”
J. Acoust. Soc. Am.
48
,
966
977
.
65.
Yoshida
,
N.
, and
Liberman
,
M. C.
(
2000
). “
Sound conditioning reduces noise-induced permanent threshold shift in mice
,”
Hear. Res.
148
,
213
219
.
66.
Zhang
,
M.
, and
Zwislocki
,
J. J.
(
1995
). “
OHC response recruitment and its correlation with loudness recruitment
,”
Hear. Res.
85
,
1
10
.
You do not currently have access to this content.