Noise is a global problem. In 1972 the World Health Organization (WHO) classified noise as a pollutant. Since then, most industrialized countries have enacted laws and local regulations to prevent and reduce acoustic environmental pollution. A further aim is to alert people to the dangers of this type of pollution. In this context, urban planners need to have tools that allow them to evaluate the degree of acoustic pollution. Scientists in many countries have modeled urban noise, using a wide range of approaches, but their results have not been as good as expected. This paper describes a model developed for the prediction of environmental urban noise using Soft Computing techniques, namely Artificial Neural Networks (ANN). The model is based on the analysis of variables regarded as influential by experts in the field and was applied to data collected on different types of streets. The results were compared to those obtained with other models. The study found that the ANN system was able to predict urban noise with greater accuracy, and thus, was an improvement over those models. The principal component analysis (PCA) was also used to try to simplify the model. Although there was a slight decline in the accuracy of the results, the values obtained were also quite acceptable.

1.
Directive 2002/49/EC of the European Parliament and of the council of 25 June 2002 relating to the assessment and management of environmental noise
,” OJ L 189, 7/18/2002, pp.
12
25
.
2.
Ley 37/2003 del ruido, de 17 de Noviembre. B.O.E. de 18 Noviembre de 2003 (Law 37/2003 of noise, 17th 2003, Spain), http://www.ruidos.org/Normas/Ley_37_2003.html (Last viewed 10/20/2009).
3.
Ordenanza municipal de protección del medio ambiente acústico en Granada, 6 Febrero 2001 (Local regulations for the protection of acoustic environment in Granada, 6th February 2001)
,” http://www.ruidos.org/Normas/Ordenanzas/Ordenanza Granada.html (Last viewed 10/20/2009).
4.
F.
Miyara
, “
Niveles sonoros
,” Universidad Nacional de Rosario, Argentina, http://www.nonoise.org/quietnet/sienc/niveles.htm (Last viewed 10/20/2009).
5.
S.
Haykin
,
Neural Networks. A Comprehensive Foundation
(
Prentice-Hall
,
New York
,
1998
).
6.
F.
Rosenblatt
, “
The perceptron: A probabilistic model for information storage and organization in the brain
,”
Psychol. Rev.
65
,
386
408
(
1958
).
7.
F.
Rosenblatt
,
Principles of Neurodynamics
(
Spartan Books
,
New York
,
1962
).
8.
B.
Widrow
,
Generalization and Information Storage in Networks of Adaline Neurons
(
Spartan Books
,
Washington, DC
,
1962
).
9.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by backpropagation errors
,”
Nature (London)
323
,
533
536
(
1986
).
10.
P.
Werbos
,
The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting
(
Wiley
,
Hoboken, NJ
,
1994
).
11.
G.
Carpenter
, “
Distributed activation, search, and learning by ART and ARTMAP neural networks
,” in
Proceedings of the International Conference on Neural Networks
(
IEEE
,
Piscataway, NJ
,
1996
), pp.
244
249
.
12.
B.
Kosko
, “
Bidirectional associative memories
,”
IEEE Trans. Syst. Man Cybern.
18
,
49
60
(
1988
).
13.
K.
Fukushima
, “
Cognitron: A self-organizing multilayered neural network
,”
Biol. Cybern.
20
,
121
136
(
1975
).
14.
J. J.
Hopfield
, “
Neural networks and physical systems with emergent collective computational abilities
,”
Proc. Natl. Acad. Sci. U.S.A.
79
,
2554
2558
(
1982
).
15.
D. H.
Ackley
,
G. H.
Hinton
, and
T. J.
Sejnowski
, “
A learning algorithm for Boltzmann machines
,”
Cogn. Sci.
9
,
147
169
(
1985
).
16.
T.
Kohonen
, in
Self-Organization and Associative Memory
,
Springer Series in Information Sciences
(
Springer
,
New York
,
1984
).
17.
C. T.
Kelley
,
Iterative Methods for Optimization
(
SIAM
,
Philadelphia
,
1999
).
18.
A.
Tettamanzi
and
M.
Tomassini
,
Soft Computing: Integrating Evolutionary, Neural, and Fuzzy System
(
Springer
,
New York
,
2001
).
19.
G. J.
Klir
and
Y.
Bo
,
Fuzzy Sets and Fuzzy Logic: Theory and Applications
(
Prentice-Hall
,
Upper Saddle River, NJ
,
1995
).
20.
A. E.
Eiben
and
J. E.
Smith
,
Introduction to Evolutionary Computation
(
Springer
,
New York
,
2003
).
21.
G.
Zoubin
,
An Introduction to Hidden Markov Models and Bayesian Networks
(
World Scientific
,
River Edge, NJ
,
2001
).
22.
Y.
Avsar
,
A.
Saral
,
M. T.
Gonullu
,
E.
Arslankaya
, and
U.
Kurt
, “
Neural network modelling of outdoor noise levels in a pilot area
,”
Turk. J. Eng. Environ. Sci.
28
,
149
155
(
2004
).
23.
T.
Berg
, “
Classification of environmental noise by means of neural networks
,” in
Proceedings of the Forum Acusticum
, Sevilla, Spain (
2002
).
24.
A.
Betkowsa
,
K.
Shinoda
, and
S.
Furui
, “
Model optimization for noise discrimination in home environment
,” in
Symposium on Large-Scale Knowledge Resources
, Tokyo, Japan (
2005
), pp.
167
170
.
25.
G.
Cammarata
,
S.
Cavalieri
, and
A.
Fichera
, “
A neural network architecture for noise prediction
,”
Neural Networks
8
,
963
973
(
1995
).
26.
L.
Couvreur
and
M.
Laniray
, “
Automatic noise recognition in urban environments based on artificial neural networks and hidden Markov models
,” in
The 33rd International Congress and Exposition on Noise Control Engineering, Inter-noise
, Prague, Czech Republic (
2004
).
27.
H.
Dia
, “
An object-oriented neural network approach to short-term traffic forecasting
,”
Eur. J. Oper. Res.
131
,
253
261
(
2001
).
28.
M. S.
Dougherty
and
M. R.
Cobbett
, “
Short-term inter-urban traffic forecasts using neural networks
,”
Int. J. Forecast.
13
,
21
31
(
1997
).
29.
L.
Fortuna
,
L.
Occhipinti
,
C.
Vinci
, and
M. G.
Xibilia
, “
A neuro-fuzzy model of urban traffic
,” in
Proceedings of the 37th Midwest Symposium on Circuits and Systems
(
1994
), Vol.
1
, pp.
603
606
.
30.
C.
Ledoux
, “
An urban traffic flow model integrating neural network
,”
Transp. Res., Part C: Emerg. Technol.
5
,
287
300
(
1997
).
31.
H.
Yin
,
S. C.
Wong
,
J.
Xu
, and
C. K.
Wong
, “
Urban traffic flow prediction using a fuzzy-neural approach
,”
Transp. Res., Part C: Emerg. Technol.
10
,
85
98
(
2002
).
32.
G.
Zaheeruddin
, “
A neuro-fuzzy approach for prediction of human work efficiency in noisy environment
,”
Appl. Soft Comput.
6
,
283
294
(
2006
).
33.
J. L.
Aguilera de Maya
, “
Método de predicción de ruido urbano basado en teoría fuzzy (Fuzzy theory based prediction method)
,” in
28th Jornadas Nacionales de Acústica y Encuentro Ibérico Acústica (28th National Conference and Iberian Meeting on Acoustics)
(
1997
).
34.
F.
Beritelli
,
S.
Casale
, and
G.
Ruggeri
, “
New results in fuzzy pattern classification of background noise
,” in
Proceedings of the 5th International Conference on Signal Processing
(
2000
), Vol.
3
, pp.
1483
1486
.
35.
D.
Botteldooren
,
A.
Verkeyn
,
M.
De Cock
, and
E. E.
Kerre
, “
Generating membership functions for a noise annoyance model from experimental data
,”
Soft Computing in Measurement and Information Acquisition
,
Studies in Fuzziness and Soft Computing
Vol.
127
(
Springer
,
New York
,
2003
), pp.
51
67
.
36.
D.
Botteldooren
and
P.
Lercher
, “
Soft-computing base analysis of the relationship between annoyance and coping with noise and odor
,”
J. Acoust. Soc. Am.
115
,
2974
2985
(
2004
).
37.
D.
Botteldooren
and
A.
Verkeyn
, “
Fuzzy models for accumulation of reported community noise annoyance from combined sources
,”
J. Acoust. Soc. Am.
112
,
1496
1508
(
2002
).
38.
D.
Botteldooren
and
A.
Verkeyn
, “
An iterative fuzzy model for cognitive processes involved in environment quality judgement
,” in
Proceedings of the 2002 IEEE International Conference on Fuzzy Systems
(
2002
).
39.
D.
Botteldooren
,
A.
Verkeyn
,
C.
Cornelis
, and
M.
De Cock
, “
On the meaning of noise annoyance modifiers: A fuzzy set theoretical approach
,”
Acta. Acust. Acust.
88
,
239
251
(
2002
).
40.
D.
Botteldooren
,
A.
Verkeyn
, and
P.
Lercher
, “
A fuzzy rule based framework for noise annoyance modelling
,”
J. Acoust. Soc. Am.
114
,
1487
1498
(
2003
).
41.
D.
Botteldooren
,
A.
Verkeyn
, and
P.
Lercher
, “
Noise annoyance modelling using fuzzy rule based systems
,”
Noise Health
4
,
27
44
(
2002
).
42.
D.
Botteldooren
and
A.
Verkeyn
, “
Aggregation of specific noise annoyance to a general noise annoyance rating: A fuzzy model
,” in
Proceedings of the 9th International Congress on Sound and Vibration
, Orlando, FL (
2002
).
43.
D.
Botteldooren
and
A.
Verkeyn
, “
Annoyance prediction with fuzzy rule bases
,” in
Computational Intelligent Systems for Applied Research
,
Proceedings of the 5th International FLINS Conference
, edited by
D.
Ruan
,
P.
D’hondt
, and
E. E.
Kerre
(
World Scientific
,
Singapore
,
2002
).
44.
D.
Botteldooren
and
A.
Verkeyn
, “
Fuzzy modelling of traffic noise annoyance
,” in
Joint 9th International Fuzzy Systems Association (IFSA) World Congress and 20th North American Fuzzy Information Processing Society (NAFIPS) International Conference
(
2001
), Vol.
2
, pp.
1176
1181
.
45.
D.
Botteldooren
and
A.
Verkeyn
, “
The effect of land-use variables in a fuzzy rule based model for noise annoyance
,” in
International Congress and Exposition on Noise Control Engineering
, Dearborn, MI (
2002
).
46.
R.
Caponetto
,
M.
Lavorgna
,
A.
Martinez
, and
L.
Occhipinti
, “
GAS for fuzzy modeling of noise pollution
,” in
1st International Conference on Knowledge-Based Intelligent Electronic Systems
(
1997
), pp.
219
223
.
47.
C.
Couvreur
,
V.
Fontaine
,
P.
Gaunard
, and
C. G.
Mubikangiey
, “
Automatic classification of environmental noise events by hidden Markov models
,”
Appl. Acoust.
54
,
187
206
(
1998
).
48.
P.
Gaunard
,
C. G.
Mubikangiey
,
C.
Couvreur
, and
V.
Fontaine
, “
Automatic classification of environmental noise events by hidden Markov models
,” in
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(
1998
), Vol.
6
, pp.
3609
3612
.
49.
L.
Ma
,
D. J.
Smith
, and
B. P.
Miller
, “
Environmental noise classification for context-aware applications
,”
Lect. Notes Comput. Sci.
2736
,
360
370
(
2003
).
50.
L.
Ma
,
D. J.
Smith
, and
B. P.
Miller
, “
Context awareness using environmental noise classification
,” in
Proceedings of the Eurospeech
, Geneva, Switzerland (
2003
), pp.
2237
2240
.
51.
Detailed French Model. Guide du Bruit, “
Préliminaires aux études de bruit: Partie II (Preliminary studies sound: Part II)
(
1991
).
52.
A. E.
González
,
E. G.
Díaz
,
A.
Jorysz
, and
G.
Torres
, “
Desarrollo de un modelo predictivo de ruido urbano adaptado a la realidad de la ciudad de Montevideo, Uruguay (Development of a urban noise prediction model adapted to the city of Montevideo, Uruguay)
,” in
Tecniacústica Madrid. II Jornadas Iberoamericanas de acústica (Iberoamerican Symposium Acoustics)
(
2000
).
53.
Ministerio de Obras Públicas, Transportes y Medio Ambiente
and
F. S.
Cardona
, “
Guías metodológicas para la elaboración de estudios de impacto ambiental: Carreteras y ferrocarriles. Sec. Estado Políticas Agua y Medio Ambiente. (Department of Public Works, Transports and Environment: Methodological guide for the study of environmental impact: Roads and railways. Water and Environment Policies State Department)
,” Madrid, Spain (
1995
).
54.
Nordic Council of Ministers
and
H. L.
Nielsen
, “
Nordic prediction method for road traffic noise
,” Statens Planverk, Nordic Countries (
1996
).
55.
Richtlinien für den Lärmschutz an Strassen (Guidelines for road noise) (RLS 90)
,” Bonn, Germany (
1990
).
56.
A. J.
Torija
,
D. P.
Ruiz
, and
A.
Ramos
, “
Modelo lineal multivariante de predicción de descriptores de ruido en la ciudad de Granada. Uso del L50 para la descripción del ruido de tráfico rodado (Multivariant linear model for noise descriptors prediction in the city of Granada. The use of L50 for road traffic noise description)
,” in
Tecnoacústica 2006, 37 Congreso Nacional de Acústica (National Congress on Acoustics) EAA European Symposium on Hydroacoustics
, Gandía, Spain (
2006
).
57.
A. J.
Torija
,
N.
Genaro
,
D. P.
Ruiz
,
A.
Ramos-Ridao
,
M.
Zamorano
, and
I.
Requena
, “
Priorization of acoustic variables: Environmental decision support for the physical characterization of urban sound environments
,”
Build. Environ.
45
,
1477
1489
(
2010
).
58.
N.
Genaro
,
A.
Torija
,
A.
Ramos
,
I.
Requena
,
D. P.
Ruiz
, and
M.
Zamorano
, “
Modeling environmental noise using artificial neural networks
,” in
International Conference on Intelligent Systems Design and Applications
, Pisa, Italy (
2009
), pp.
215
219
.
59.
R.
Correa
,
M. A.
Chesta
,
J. R.
Morales
,
M. I.
Dinator
,
I.
Requena
, and
I.
Vila
, “
Artificial neural networks applied to quantitative elemental analysis of organic material using PIXE
,”
Nucl. Instrum. Methods Phys. Res. B
248
,
324
328
(
2006
).
You do not currently have access to this content.