In linear propagation, sidelobe levels of Bessel limited diffraction beams are only about 8 dB down relative to the mainlobe. In the nonlinear regime, these beams will have a region near the source where the side-lobe level of the second harmonic is 16 dB down, but this region has usually been considered to be so small that it is of little practical interest. In this paper it is shown that when there are only 1 to 3 sidelobes in a finite aperture Bessel beam, the second harmonic field will have low sidelobes for distances up to half of the depth of field. This result is backed up by simulations. In a medium with absorption, previous theory has shown that the sidelobes of the Bessel beam will also be reduced but only for absorption that was too high to be of practical use. Simulations presented here show that for breast tissue, which only has about 10% of the absorption of previous criteria, one will still get sidelobes which are comparable to that of a rectangular aperture even when the sidelobes would be high in a non-absorbing medium.

1.
J.
Durnin
, “
Exact solutions for nondiffracting beams. I. The scalar theory
,”
J. Opt. Soc. Am. A
4
,
651
654
(
1987
).
2.
D.
Hsu
,
F.
Margetan
, and
D.
Thompson
, “
Bessel beam ultrasonic transducer: Fabrication method and experimental results
,”
Appl. Phys. Lett.
55
,
2066
2068
(
1989
).
3.
J. -Y.
Lu
and
J. F.
Greenleaf
, “
Ultrasonic nondiffracting transducer for medical imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
438
447
(
1990
).
4.
J. -Y.
Lu
and
J. F.
Greenleaf
, “
Sidelobe reduction for limited diffraction pulse-echo systems
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
40
,
735
746
(
1993
).
5.
J. -Y.
Lu
, “
Bowtie limited diffraction beams for low-sidelobe and large depth of field imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
1050
1063
(
1995
).
6.
S.
He
and
J. -Y.
Lu
, “
Sidelobe reduction of limited diffraction beams with Chebyshev aperture apodization
,”
J. Acoust. Soc. Am.
107
,
3556
3559
(
2000
).
7.
F.
Hooi
,
K. E.
Thomenius
,
R.
Fisher
, and
P. L.
Carson
, “
Hybrid beamforming and steering with reconfigurable arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
1311
1319
(
2010
).
8.
D.
Ding
and
Z.
Lu
, “
The second harmonic component in the Bessel beam
,”
Appl. Phys. Lett.
68
,
608
610
(
1996
).
9.
G.
Du
,
Y.
Zhang
, and
Z.
Zhu
, “
Nonlinear distortion of a non-diffraction ultrasonic field
,” in
Proceedings of the 14th International Symposium on Nonlinear Acoustics
(
1996
), pp.
189
193
.
10.
J. -F.
Synnevåg
and
S.
Holm
, “
Non-linear propagation of limited diffraction beams
,” in
Proceedings of the IEEE Ultrasonics Symposium
, Sendai, Japan (
1998
), pp.
1885
1888
.
11.
K. N.
Cunningham
and
M. F.
Hamilton
, “
Bessel beams of finite amplitude in absorbing fluids
,”
J. Acoust. Soc. Am.
108
,
519
525
(
2000
).
12.
D.
Ding
and
J. -Y.
Lu
, “
Second-harmonic generation of the nth-order Bessel beam
,”
Phys. Rev. E
61
,
2038
2041
(
2000
).
13.
S.
Holm
, “
Bessel and conical beams and approximation with annular arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
712
718
(
1998
).
14.
S.
Aanonsen
,
T.
Barkve
,
J.
Tjøtta
, and
S.
Tjøtta
, “
Distortion and harmonic generation in the nearfield of a finite amplitude sound beam
,”
J. Acoust. Soc. Am.
75
,
749
768
(
1984
).
15.
D. -S.
Ding
,
S.
Wang
, and
Y.
Wang
, “
Nonlinear propagation of Bessel–Gauss ultrasonic beams
,”
J. Appl. Phys.
86
,
1716
1723
(
1999
).
16.
D. -S.
Ding
,
J. -Y.
Xu
, and
Y. -J.
Wang
, “
Second-harmonic generation of Bessel beams in lossy media
,”
Chin. Phys. Lett.
19
,
689
690
(
2002
).
17.
J.
Huang
,
D.
Ding
, and
Y.
Hsu
, “
Second-harmonic generation of practical Bessel beams
,”
J. Sound Vib.
328
,
148
155
(
2009
).
18.
P. T.
Christopher
and
K. J.
Parker
, “
New approaches to nonlinear diffractive field propagation
,”
J. Acoust. Soc. Am.
90
,
488
499
(
1991
).
19.
J.
Berntsen
, http://folk.uib.no/nmajb/Bergencode.html (Last viewed 1/11/2010).
20.
J.
Berntsen
, “
Numerical calculations of finite amplitude sound beams
,”
Frontiers of Nonlinear Acoustics
, in
Proceedings of the 12th ISNA
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Elsevier
,
New York
,
1990
), pp.
191
196
.
21.
Model equations
,” in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic
,
Boston
,
1998
), Chap. 3, pp.
56
63
.
22.
J. N.
Tjøtta
and
S.
Tjøtta
, “
Nonlinear equations of acoustics, with application to parametric acoustic arrays
,”
J. Acoust. Soc. Am.
69
,
1644
1652
(
1981
).
23.
P. T.
Christopher
and
K. J.
Parker
, “
New approaches to the linear propagation of acoustic fields
,”
J. Acoust. Soc. Am.
90
,
507
521
(
1991
).
24.
D. H.
Trivett
and
A. L.
Van Buren
, “
Comments on “Distortion of finite amplitude ultrasound in lossy media,” by M. E. Haran and B. D. Cook [J. Acoust. Soc. Am. 73, 774–779 (1983)]
,”
J. Acoust. Soc. Am.
76
,
1257
1258
(
1984
).
25.
F. A.
Duck
, “
Acoustic properties of tissue at ultrasonic frequencies
,”
Physical Properties of Tissues—A Comprehensive Reference Book
(
Academic
,
San Diego
,
1990
), Chap. 4, pp.
98
108
.
26.
T. L.
Szabo
,
Diagnostic Ultrasound Imaging: Inside Out
(
Elsevier
,
Amsterdam
,
2004
), p.
535
.
You do not currently have access to this content.