This paper presents a method for locating arbitrarily time-dependent acoustic sources in a free field in real time by using only four microphones. This method is capable of handling a wide variety of acoustic signals, including broadband, narrowband, impulsive, and continuous sound over the entire audible frequency range, produced by multiple sources in three dimensional (3D) space. Locations of acoustic sources are indicated by the Cartesian coordinates. The underlying principle of this method is a hybrid approach that consists of modeling of acoustic radiation from a point source in a free field, triangulation, and de-noising to enhance the signal to noise ratio (SNR). Numerical simulations are conducted to study the impacts of SNR, microphone spacing, source distance and frequency on spatial resolution and accuracy of source localizations. Based on these results, a simple device that consists of four microphones mounted on three mutually orthogonal axes at an optimal distance, a four-channel signal conditioner, and a camera is fabricated. Experiments are conducted in different environments to assess its effectiveness in locating sources that produce arbitrarily time-dependent acoustic signals, regardless whether a sound source is stationary or moves in space, even toward behind measurement microphones. Practical limitations on this method are discussed.

1.
G. C.
Carter
, “
Time delay estimation for passive sonar signal processing
,”
IEEE Trans. Acoust., Speech, Signal Process.
29
,
463
470
(
1981
).
2.
B. G.
Ferguson
, “
Variability in the passive ranging of acoustic sources in air using a wavefront curvature technique
,”
J. Acoust. Soc. Am.
108
,
1535
1544
(
2000
).
3.
B. G.
Ferguson
,
L. G.
Criswick
, and
K. W.
Lo
, “
Locating far-field impulsive sound sources in air by triangulation
,”
J. Acoust. Soc. Am.
111
,
104
116
(
2002
).
4.
G. C.
Carter
, “
Passive ranging errors due to receiving hydrophone position uncertainty
,”
J. Acoust. Soc. Am.
65
,
528
530
(
1979
).
5.
E. J.
Hilliard
, Jr.
and
R. F.
Pinkos
, “
An analysis of triangulation ranging using beta density angular errors
,”
J. Acoust. Soc. Am.
65
,
1218
1228
(
1979
).
6.
E. J.
Hilliard
, Jr.
and
J. J.
Perruzzi
, “
Time-delay triangulation ranging using beta density measurement error statistics
,”
J. Acoust. Soc. Am.
72
,
1831
1837
(
1982
).
7.
A.
Tobias
, “
Acoustic-Emission source location in two dimensions by an array of three sensors
,”
Non-Destr. Test.
9
,
9
12
(
1976
).
8.
F.
Figueroa
and
J. S.
Lamancusa
, “
A method for accurate detection of time-of-arrival analysis and design of an ultrasonic ranging system
,”
J. Acoust. Soc. Am.
91
,
486
94
(
1992
).
9.
H. A.
Canistraro
and
E. H.
Jordan
, “
Projectile-impact-location determination: an acoustic triangulation method
,”
Meas. Sci. Technol.
7
,
1755
1760
(
1996
).
10.
S. M.
Ziola
and
M. R.
Gorman
, “
Source location in thin plates using cross-correlation
,”
J. Acoust. Soc. Am.
90
,
2551
2556
(
1991
).
11.
P. T.
Coverley
and
W. J.
Staszewski
, “
Impact damage location in composite structures using optimized sensor triangulation procedure
,”
Smart Mater. Struct.
12
,
795
803
(
2003
).
12.
T.
Kundu
,
Samik
Das
, and
K. V.
Jata
, “
Point of impact prediction in isotropic and anisotropic plates from the acoustic emission data
,”
J. Acoust. Soc. Am.
122
,
2057
2556
(
2007
).
13.
D. E. N.
Davies
, “
Circular arrays
,” in
The Handbook of Antenna Design
(
Peregrinus
,
London
,
1983
), Vol.
2
, Chap. 12.
14.
J. P.
Fabre
and
J. H.
Wilson
, “
Minimum detectable level evaluation of inverse beamforming using Outpost SUNRISE data
,”
J. Acoust. Soc. Am.
98
,
3262
3278
(
1995
).
15.
J.
Meyer
, “
Beamforming for a circular microphone array mounted on spherically shaped objects
,”
J. Acoust. Soc. Am.
109
,
185
193
(
2001
).
16.
A.
Cigada
,
M.
Lurati
,
F.
Ripamonti
, and
M.
Vanali
, “
Moving microphone arrays to reduce spatial aliasing in the beamforming technique: Theoretical background and numerical investigation localization of multiple underwater intruders
,”
J. Acoust. Soc. Am.
124
,
3648
3658
(
2008
).
17.
J. E.
Greenberg
and
P. M.
Zurek
, “
Evaluation of an adaptive beamforming method for hearing aids
,”
J. Acoust. Soc. Am.
91
,
1662
1676
(
1992
).
18.
M.
Kompis
and
N.
Dillier
, “
Performance of an adaptive beamforming noise reduction scheme for hearing aid applications. I. Prediction of the signal-to-noise-ratio improvement
,”
J. Acoust. Soc. Am.
109
,
1123
1133
(
2001
).
19.
M.
Kompis
and
N.
Dillier
, “
Performance of an adaptive beamforming noise reduction scheme for hearing aid applications. II. Experimental verification of the predictions
,”
J. Acoust. Soc. Am.
109
,
1134
1143
(
2001
).
20.
G. L.
D’Spain
,
E.
Terrill
,
C. D.
Chadwell
,
J. A.
Smith
, and
S. D.
Lynch
, “
Active control of passive acoustic fields: Passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle
,”
J. Acoust. Soc. Am.
120
,
3635
3654
(
2006
).
21.
A. M.
Thode
,
W. A.
Kuperman
,
G. L.
D’Spain
, and
W. S.
Hodgkiss
, “
Localization using Bartlett matched-field processor sidelobes
,”
J. Acoust. Soc. Am.
107
,
278
286
(
2000
).
22.
H.
Tao
and
J. L.
Krolik
, “
Waveguide invariant focusing for broadband beamforming in an oceanic waveguide
,”
J. Acoust. Soc. Am.
123
,
1338
1346
(
2008
).
23.
M.
Fink
, “
Time reversed acoustics
,”
Phys. Today
50
(
3
),
34
40
(
1997
).
24.
E.
Kerbrat
,
C.
Prada
,
D.
Cassereau
, and
M.
Fink
, “
Imaging in the presence of grain noise using the decomposition of the time reversal operator
,”
J. Acoust. Soc. Am.
113
,
1230
1240
(
2003
).
25.
D.
Francoeur
and
A.
Berry
, “
Time reversal of flexural waves in a beam at audible frequency
,”
J. Acoust. Soc. Am.
124
,
1006
1017
(
2008
).
26.
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror
,”
J. Acoust. Soc. Am.
103
,
25
40
(
1998
).
27.
W. S.
Hodgkiss
,
H. C.
Song
,
W. A.
Kuperman
,
T.
Akal
,
C.
Ferla
, and
D. R.
Jackson
, “
A long-range and variable focus phase-conjugation experiment in shallow water
,”
J. Acoust. Soc. Am.
105
,
1597
1604
(
1999
).
28.
J. F.
Lingevitch
,
H. C.
Song
, and
W. A.
Kuperman
, “
Time reversed reverberation focusing in a waveguide
,”
J. Acoust. Soc. Am.
111
,
2609
2614
(
2002
).
29.
S.
Yon
,
M.
Tanter
, and
M.
Fink
, “
Sound focusing in rooms: The time reversal approach
,”
J. Acoust. Soc. Am.
113
,
1533
1543
(
2003
).
30.
G.
Montaldo
,
M.
Tanter
, and
M.
Fink
, “
Revisiting iterative time reversal processing: Application to detection of multiple targets
,”
J. Acoust. Soc. Am.
115
,
776
784
(
2004
).
31.
J. V.
Candy
,
A. W.
Meyer
,
A. J.
Poggio
, and
B. L.
Guidry
, “
Time reversal processing for an acoustic communications experiment in a highly reverberant environment
,”
J. Acoust. Soc. Am.
115
,
1621
1631
(
2004
).
32.
G.
Ribay
,
J.
de Rosny
, and
M.
Fink
, “
Time reversal of noise sources in a reverberation room
,”
J. Acoust. Soc. Am.
117
,
2866
2872
(
2005
).
33.
H.
Tortel
,
G.
Micolau
, and
M.
Saillard
, “
Decomposition of the time reversal operator for electromagnetic scattering
,”
J. Electromagn. Waves Appl.
13
,
687
719
(
1999
).
34.
F. K.
Gruber
,
E. A.
Marengo
, and
A. J.
Devaney
, “
Time-reversal imaging with multiple signal classification considering multiple scattering between the targets
,”
J. Acoust. Soc. Am.
115
,
3042
3047
(
2004
).
35.
C.
Prada
and
J. L.
Thomas
, “
Experimental sub-wavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix
,”
J. Acoust. Soc. Am.
114
,
235
243
(
2003
).
36.
J. -L.
Robert
,
M.
Burcher
,
C.
Cohen-Bacrie
, and
M.
Fink
, “
Time reversal operator decomposition with focused transmission and robustness to speckle noise: Application to microcalcification detection
,”
J. Acoust. Soc. Am.
119
,
3848
3859
(
2006
).
37.
J. E.
Ehrenberg
,
T. E.
Ewart
, and
R. D.
Morris
, “
Signal processing techniques for resolving individual pulses in a multipath signal
,”
J. Acoust. Soc. Am.
63
,
1861
1865
(
1978
).
38.
C. H.
Knapp
and
G. C.
Carter
, “
The generalized correlation method for estimation of time delay
,”
IEEE Trans. Acoust., Speech, Signal Process.
24
,
320
327
(
1976
).
39.
J.
Chen
,
J.
Benesty
, and
Y.
Huang
, “
Time delay estimation in room acoustic environments: An overview
,”
EURASIP J. Appl. Signal Process.
2006
,
1
20
(
2006
).
40.
S. F.
Wu
, “
3D soundscaping
,” U.S. Patent Application No. 61,172,494 (
2009
).
42.
J.
Chen
,
J.
Benesty
, and
Y.
Huang
, “
Robust time delay estimation exploiting redundancy among multiple microphones
,”
IEEE Trans. Speech Audio Process.
11
,
549
557
(
2003
).
You do not currently have access to this content.