The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.

1.
L. L.
Beranek
and
G. A.
Work
, “
Sound transmission through multiple structures containing flexible blankets
,”
J. Acoust. Soc. Am.
21
,
419
428
(
1949
).
2.
F.
Fahy
,
Sound and Structural Vibration Radiation, Transmission and Response
(
Academic
,
New York
,
1985
), pp.
173
175
.
3.
F.
Fahy
,
Foundations of Engineering Acoustics
(
Academic
,
New York
,
2001
), pp.
330
337
.
4.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
, 2nd ed. (
Wiley
,
New York
,
2009
), pp.
73
95
,
243
280
,
283
306
.
5.
A.
Pellicier
and
N.
Trompette
, “
A review of analytical methods, based on the wave approach, to compute partitions transmission loss
,”
Appl. Acoust.
68
,
1192
1212
(
2007
).
6.
K.
Gösele
, “
Zur Berechnung der Luftschalldämmung von doppelschaligen Bauteilen (ohne Verbindung der Schalen) [Prediction of the sound transmission loss of double partitions (without structure-borne connections)]
,”
Acustica
45
,
218
227
(
1980
).
7.
J. S.
Bolton
,
N. M.
Shiau
, and
Y. J.
Kang
, “
Sound transmission through multi-panel structures with elastic porous materials
,”
J. Sound Vib.
191
,
317
347
(
1996
).
8.
M. A.
Biot
and
D. G.
Willis
, “
The elastic coefficients of the theory of consolidation
,”
J. Appl. Mech.
24
,
594
601
(
1957
).
9.
W.
Lauriks
,
P.
Mees
, and
J. F.
Allard
, “
The acoustic transmission through layered systems
,”
J. Sound Vib.
155
,
125
132
(
1992
).
10.
R.
Panneton
and
N.
Atalla
, “
Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials
,”
J. Acoust. Soc. Am.
100
,
346
354
(
1996
).
11.
M.
Yairi
,
K.
Sakagami
,
M.
Morimoto
,
A.
Minemura
, and
K.
Andow
, “
Effect of acoustical damping with a porous absorptive layer in the cavity to reduce the structure-borne sound radiation from a double-leaf structure
,”
Appl. Acoust.
64
,
365
384
(
2003
).
12.
R. A.
Mangiarotty
, “
Optimization of the mass distribution and the air spaces in multiple-element soundproofing structures
,”
J. Acoust. Soc. Am.
35
,
1023
1029
(
1963
).
13.
M.
Bruneau
and
T.
Scelo
,
Fundamentals of Acoustics
(
ISTE
,
London
,
2006
), pp.
173
176
.
14.
R.
Panneton
, “
Comments on the limp frame equivalent model for porous media
,”
J. Acoust. Soc. Am.
122
,
EL217
EL222
(
2007
).
15.
O.
Doutres
,
N.
Dauchez
,
J. M.
Génevaux
, and
O.
Dazel
, “
Validity of the limp model for porous materials: A criterion based on the Biot theory
,”
J. Acoust. Soc. Am.
122
,
2038
2048
(
2007
).
16.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
17.
J. F.
Allard
and
Y.
Champoux
, “
New empirical equations for sound absorption in rigid frame fibrous materials
,”
J. Acoust. Soc. Am.
91
,
3346
3353
(
1992
).
18.
O.
Doutres
,
Y.
Salissou
,
N.
Atalla
, and
R.
Panneton
, “
Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube
,”
Appl. Acoust.
71
,
506
509
(
2010
).
19.
B. H.
Song
and
J. S.
Bolton
, “
A transfer matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials
,”
J. Acoust. Soc. Am.
107
,
1131
1152
(
2000
).
20.
Y.
Salissou
and
R.
Panneton
, “
A general wave decomposition formula for the measurement of normal incidence sound transmission loss in impedance tube
,”
J. Acoust. Soc. Am.
125
,
2083
2090
(
2009
).
21.
Anonymous, “
Acoustics—Determination of sound absorption coefficient and impedance in impedance tubes. Part 2: Transfer-function method
,” International Standard ISO-10534-2 (
1998
).
22.
D.
Pilon
,
R.
Panneton
, and
F.
Sgard
, “
Behavioral criterion quantifying the edge-constrained effects on foams in the standing wave tube
,”
J. Acoust. Soc. Am.
114
,
1980
1987
(
2003
).
23.
D.
Pilon
,
R.
Panneton
, and
F.
Sgard
, “
Behavioral criterion quantifying the effects of circumferential air gaps on porous materials in the standing wave tube
,”
J. Acoust. Soc. Am.
116
,
344
356
(
2004
).
24.
B. H.
Song
,
J. S.
Bolton
, and
Y. J.
Kang
, “
Effect of circumferential edge constraint on the acoustical properties of glass fiber materials
,”
J. Acoust. Soc. Am.
110
,
2902
2916
(
2001
).
25.
H. S.
Tsay
and
F. H.
Yeh
, “
The influence of circumferential edge constraint on the acoustical properties of open-cell polyurethane foam samples
,”
J. Acoust. Soc. Am.
119
,
2804
2814
(
2006
).
You do not currently have access to this content.