To date most sonars use narrow band pulses and often only the echo envelope is used for object detection and classification. This paper considers the advantages afforded by bio-inspired sonar for object identification and classification through the analysis and the understanding of the broadband echo structure. Using the biomimetic dolphin based sonar system in conjunction with bio-inspired pulses developed from observations of bottlenose dolphins performing object identification tasks, results are presented from experiments carried out in a wave tank and harbor. In these experiments responses of various targets to two different bio-inspired signals are measured and analyzed. The differences in response demonstrate the strong dependency between signal design and echo interpretation. In the simulations and empirical data, the resonance phenomena of these targets cause strong notches and peaks in the echo spectra. With precision in the localization of these peaks and dips of around 1 kHz, the locations are very stable for broadside insonification of the targets and they can be used as features for classification. This leads to the proposal of a broadband classifier which operates by extracting the notch positions in the target echo spectra.

1.
D.
Boulinguez
and
A.
Quinquis
, “
Classification of underwater objects using Fourier descriptors
,” in
Proceedings of the International Conference on Image Processing and Application
(
Manchester, UK
, July
1999
).
2.
S. W.
Perry
and
L.
Guan
, “
Detection of small man-made objects in sector scan imagery using neural networks
,”
Proc. IEEE Int. Conf. on Oceanic Engineering
, Vol.
4
, pp.
2108
2114
, Honolulu, HI,
2001
.
3.
E.
Dura
,
J.
Bell
, and
D.
Lane
, “
Superellipse fitting for the recovery and classification of mine-like shapes in sidescan sonar images
,”
IEEE J. Ocean. Eng.
33
,
434
444
(
2008
).
4.
M. G.
Bello
and
G. J.
Dobeck
, “
The use of texture measures in improving mine classification performance
,” in
Proceedings of the OCEANS 2003
(
2003
).
5.
I.
Quidu
,
J.
Malkasse
,
G.
Burel
, and
P.
Vilbe
, “
Mine classification using a hybrid set of descriptors
,” in
Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition
, Vol.
1
,
291
297
(
2000
).
6.
S.
Reed
,
Y.
Petillot
, and
J.
Bell
, “
An automatic approach to the detection and extraction of mine features in sidescan sonar
,”
IEEE J. Ocean. Eng.
28
,
90
105
(
2003
).
7.
G. J.
Dobeck
, “
Algorithm fusion for automated sea mine detection and classification
,” in
Proceedings of the Oceans ‘01 Conference
, Vol.
1
,
130
134
(
2001
).
8.
T.
Aridgides
,
M.
Fernandez
, and
G.
Dobeck
, “
Processing string fusion for automated sea mine classification in shallow water
,” in
Proceedings of the Oceans ‘02 MTS/IEEE
, Vol.
4
,
2168
2175
(
2002
).
9.
T.
Aridgides
and
M.
Fernandez
, “
Cascaded Volterra fusion of processing strings for automated sea mine classification in shallow water
,” in
Proceedings of the OCEANS 2005 MTS/IEEE
, Vol.
2
,
1636
1643
(
2005
).
10.
P. -Y.
Mignotte
,
E.
Coiras
,
H.
Rohou
,
Y.
Petillot
,
J.
Bell
, and
K.
Lebart
, “
Adaptive fusion framework based on augmented reality training
,”
IEE Proc., Radar Sonar Navig.
2
,
146
154
(
2008
).
11.
H.
Lew
, “
Broadband active sonar: Implications and constraints
,” Technical Report No. DSTO-TR-0435, Melbourne, Australia (
1996
).
12.
D. B.
Reeder
,
J. M.
Jech
, and
T. K.
Stanton
, “
Broadband acoustic backscatter and high resolution morphology of fish, Part 1: Measurements
,” in
Proceedings of the ICES Symposium on Acoustics in Fisheries and Aquatic Ecology
(
Montpellier, France
, June
2002
).
13.
W. L.
Michael
,
J. M.
Jech
, and
D. A.
Demer
, “
Multi-frequency echo-classification and target strength measurements of Atlantic herring
,” in
Proceedings of the ICES Symposium on Acoustics in Fisheries and Aquatic Ecology
(
Montpellier, France
, June
2002
).
14.
T. K.
Stanton
,
D. B.
Reeder
, and
J. M.
Jech
, “
Inference of fish orientation from broadband acoustic echoes
,” in
Proceedings of the ICES Symposium on Acoustics in Fisheries and Aquatic Ecology
(
Montpellier, France
, June
2002
).
15.
W.
Au
,
The Sonar of Dolphins
(
Springer-Verlag
,
Berlin
,
1993
).
16.
Y.
Pailhas
,
C.
Capus
, and
J.
Bell
, “
Modelling for obstacle avoidance sonar design
,”
Proceedings of the Institute of Acoustics (IOA)
(
2005
).
17.
P.
Nachtigall
, “
Odontocete echolocation performance on object size, shape, and material
,” in
Animal Sonar Systems
,
R. G.
Busnel
and
J. F.
Fish
, eds. (
Plenum
,
New York
,
1980
), pp.
71
95
.
18.
R.
Doolittle
and
H.
Uberall
, “
Sound scattering by elastic cylindrical shells
,”
J. Acoust. Soc. Am.
39
,
272
275
(
1966
).
19.
R.
Hickling
, “
Analysis of echoes from a solid elastic sphere in water
,”
J. Acoust. Soc. Am.
34
,
1582
1592
(
1962
).
20.
T.
Stanton
, “
Sound scattering by cylinders of finite length. III. Deformed cylinders
,”
J. Acoust. Soc. Am.
86
,
691
705
(
1989
).
21.
G.
Kino
,
Acoustic Waves
(
Prentice-Hall Signal Processing Series
,
Englewood Cliffs, NJ
,
1987
).
22.
G.
Gaunaurd
and
H.
Uberall
, “
RST analysis of monostatic and bistatic acoustic echoes from an elastic sphere
,”
J. Acoust. Soc. Am.
73
,
1
12
(
1983
).
23.
M.
Hasan
and
M.
Azimi-Sadjadi
, “
A modified block FTF adaptive algorithm with applications to underwater target detection
,”
IEEE Trans. Signal Process.
73
,
1
12
(
1996
).
24.
G.
Gaunaurd
and
H.
Strifors
, “
Frequency- and time-domain analysis of the transient resonance scattering resulting from the interaction of a sound pulse with submerged elastic shells
,”
IEEE Trans. Signal Process.
40
,
313
324
(
1993
).
25.
P. L.
Marston
, “
GTD for backscattering from elastic spheres and cylinders in water, and coupling of surface elastic waves with the acoustic field
,”
J. Acoust. Soc. Am.
83
,
25
37
(
1988
).
26.
S. G.
Kargl
and
P. L.
Marston
, “
Observations and modeling of the backscattering of short tone bursts from spherical shell: Lamb wave echoes, glory, and axial reverberation
,”
J. Acoust. Soc. Am.
85
,
1014
1028
(
1989
).
27.
H.
Lamb
, “
On waves in an elastic plate
,”
Proc. R. Soc. London Ser. A
93
,
114
128
(
1917
).
28.
T. N.
Grigsby
and
E. J.
Tajchman
, “
Properties of lamb waves relevant to the ultrasonic inspection of thin plates
,”
IEE Trans. Ultrason. Eng.
8
,
26
33
(
1961
).
29.
L.
Collatz
,
The Numerical Treatment of Differential Equations
(
Springer-Verlag
,
Berlin
,
1966
).
30.
J. M.
Bell
and
M.
Lianantonakis
, “
Analysis of target scattering using a finite difference time domain model
,”
IOA Conf. on Sonar Transducers and Numerical Modelling in Underwater Acoustics
, Vol. 27, Pt. 1, Teddington, UK (
2005
).
31.
D.
Houser
,
S.
Martin
,
M.
Pillips
,
E.
Bauer
,
T.
Herrin
, and
P.
Moore
, “
Signal processing applied to the dolphin-based sonar system
,” in
Proceedings of the OCEANS 2003
, Vol. 1,
297
303
(Oceans 2003 MTS/IEEE, San Diego, CA, September
2003
).
32.
D.
Houser
,
D.
Helweg
, and
P.
Moore
, “
Classification of dolphin echolocation clicks by energy and frequency distributions
,”
J. Acoust. Soc. Am.
16
,
1576
1585
(
1999
).
33.
C.
Capus
,
Y.
Pailhas
,
K.
Brown
,
D.
Lane
,
P.
Moore
, and
D.
Houser
, “
Bio-inspired wideband sonar signals based on observations of the bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
121
,
594
604
(
2007
).
34.
A.
Bultan
, “
A four-parameter atomic decomposition of chirplets
,”
IEEE Trans. Signal Process.
47
,
731
745
(
1999
).
35.
C.
Capus
and
K.
Brown
, “
Short-time fractional Fourier methods for the time-frequency representation of chirp signals
,”
J. Acoust. Soc. Am.
113
,
3253
3263
(
2003
).
36.
G. C.
Gaunaurd
,
D.
Brill
,
H.
Huang
,
P. W. B.
Moore
, and
H. C.
Strifirs
, “
Signal processing of the echo signatures returned by submerged shells insonified by dolphins “clicks:” Active classification
,”
J. Acoust. Soc. Am.
103
,
1547
1557
(
1998
).
37.
G.
Shafer
,
A Mathematical Theory of Evidence
(
Princeton University Press
,
Princeton, NJ
,
1976
).
38.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions
(
Dover Publication
,
New York
,
1965
).
You do not currently have access to this content.